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Abstract

Hugo Hadwiger proved that a graph that is not 3-colorable must have a Kjy-
minor and conjectured that a graph that is not k-colorable must have a Kj41-
minor. By using the Hochstéattler-Nesettil definition for the chromatic number of
an oriented matroid, we formulate a generalized version of Hadwiger’s conjecture
that might hold for the class of oriented matroids. In particular, it is possible
that every oriented matroid with no M (K,)-minor is 3-colorable.

The fact that K4-minor-free graphs are characterized as series-parallel net-
works leads to an easy proof that they are all 3-colorable. We show how to
extend this argument to a particular subclass of M (K,)-minor-free oriented
matroids. Specifically we generalize the notion of being series-parallel to ori-
ented matroids, and then show that generalized series-parallel oriented matroids
are 3-colorable. To illustrate the method, we show that every orientation of a
bicircular matroid is 3-colorable.
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1. Introduction

Hadwiger’s conjecture [13], that every graph that is not k-colorable must
have a Kjii-minor for k¥ > 1, is “one of the deepest unsolved problems in
graph theory”[5]. While the first non-trivial case, when k = 3, was proved by
Hadwiger, he pointed out that Klaus Wagner had shown that £ = 4 is equivalent
to the Four Color Theorem [26, 2, 21]. Robertson, Seymour and Thomas [22]
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reduced the case k = 5 to the Four Color Theorem. The conjecture remains
open for k > 6.

Recently, Goddyn and Hochstéttler [11] observed that a proper generaliza-
tion of Hadwiger’s conjecture to regular matroids includes Tutte’s k-flow con-
jectures for the cases k € {4,5} [23, 24, 25]. Let N be a matroid. We say
that an oriented matroid O is N-free if no minor of its underlying matroid O
is isomorphic to N. The extension of Hadwiger’s conjecture in [11] asserts that
every regular matroid O that is M (Kjy1)-free either is k-colorable or k = 4
with O having the cographic matroid of the Petersen graph as a minor. The
case k = 3 remains the only non-trivial settled case.

Hochstéttler and Nesettil [14] generalized the theory of nowhere-zero flows
to the class of oriented matroids. Hochstéattler and Nickel [15, 16] extended
this work and defined the chromatic number of an oriented matroid. They also
showed that the chromatic number of a simple oriented matroid of rank r is
at most r + 1, with equality if and only if the matroid is an orientation of
M(K,+1). This suggests that, in some sense, complete graphs are necessary to
construct oriented matroids with large chromatic number. With their definition
of chromatic number, Hadwiger’s conjecture may, to our knowledge, hold true
for the class of oriented matroids.

QUESTION 1. Isevery oriented matroid O that is M (K}j1)-free either k-colorable
or k = 4 with O having the cographic matroid of the Petersen graph as a minor?

But, in this setting, even the case k = 3 remains open: Are M (K4)-free
oriented matroids always 3-colorable?

Jim Geelen asked [8] for some characterization of matroids without an M (Ky4)-
minor. Here we define the class of generalized series-parallel oriented matroids
(Definition 3), which might provide some progress towards an answer to Geelen’s
question in the oriented case. While it is clear by definition that every general-
ized series-parallel matroid is M (K4 )-free, the converse statement, if true, would
verify Hadwiger’s conjecture for oriented matroids in the case k = 3.

We assume some familiarity with graph theory, matroid theory and oriented
matroids; standard references are [28, 19, 4]. The paper is organized as follows.
In the next section we review the definition of the chromatic number of an
oriented matroid. In Section 3 we define generalized series-parallel oriented
matroids and prove that they are 3-colorable. In Section 4 we prove that every
orientation of a bicircular matroid is generalized series-parallel, and is therefore
3-colorable. We conclude with several open problems.

2. Nowhere-Zero Coflows in Oriented Matroids

A tension in a digraph D = (V, A) is a map f*: A — R such that
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for every weak cycle C in D, where CT and C~ are the forward and backward
arcs in C. We say that f* is a nowhere-zero-k tension (NZ-k tension) if f* :
A—={£1,£2...,£(k-1)}.

Let ¢: V — {0,1,...,k — 1} be a proper k-coloring of a connected graph
G = (V,E). Let D = (V, A) be some orientation of G and define f* : A —
{£1,...,+£(k = 1)} by f*((u,v)) = ¢(v) — ¢(u). Then f* is a NZ-k tension.
The Kirchhoff Voltage Law implies every NZ-k tension arises from a proper
k-coloring this way (see for example [23, 9]).

The notion of a NZ-k tension can be generalized to a regular matroid M
(essentially done by Arrowsmith and Jaeger [3]) by referring to the integer
combinations of rows in a totally unimodular matrix representation of M. If one
attempts to further generalize NZ-k tensions to the class of oriented matroids
one faces the difficulty that, for example, the four point line does not admit a
nontrivial tension. The following definitions from [14, 15, 16] avoid this difficulty.

The coflow lattice of an oriented matroid O on a finite set E, denoted as Fo-,
is the integer lattice generated by the signed characteristic vectors of the signed
cocircuits D of O, where the signed characteristic vector of a signed cocircuit
D = (D", D7) is defined by
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We call any z € Fp+ a coflow of O. Such an x is a nowhere-zero-k coflow
(NZ-k coflow) if 0 < |z(e)| < k holds for e € E. The chromatic number x(O)
is the minimum & such that O has a NZ-k coflow. It is easy to see that x(O)
has a finite value if and only if O has no loops. Since reorienting an element
of e in the groundset of O corresponds to negating z(e) in every coflow z, the
chromatic number is reorientation invariant. It is shown [15] that x(O) is a
matroid invariant for uniform or corank 3 oriented matroids. It is unknown
whether this is the case in general, but it is known [15] that the dimension of
Fo~ in general is not a matroid invariant.

There are alternative ways to define the chromatic number of a matroid,
but they appear less suited to generalizing Hadwiger’s conjecture. The most
recent one [17, 18], which we prefer to call the independent set covering number,
does not coincide with the chromatic number of a graph in the graphic case.
Welsh [27] defined the chromatic number of a matroid M to be the smallest non-
negative integer k such that P(M;k) > 0 holds for the chromatic polynomial
P(M; ). This definition does not require orientability and coincides with ours
for regular matroids. But then the chromatic number of the n-pont line UJ
equals n (see [27] Page 264) and is not bounded for matroids of bounded rank.
Another alternative is to define the chromatic number of an oriented matroid O




to be [x.(O)], where x.(O) is the circular chromatic number of O, as defined
by Hlinény et. al. [10, 6]. Although their definition coincides with ours when
O is regular [12], it is not a matroid invariant in general. For example, the
(bicircular) matroid U$ has 3 reorientation classes with chromatic number 2,
and one with chromatic number 4. The following theorem further supports the
suitability of our definition of x(O) with regard to Hadwiger’s conjecture.

THEOREM 2 ([16]). Let O be a simple oriented matroid of rank r > 3. Then
x(O) < r+ 1. Moreover, x(O) = r + 1 if and only if O is an orientation of
M(K,y1).

3. Generalized Series-parallel Oriented Matroids

Recall that a parallel extension of a matroid M is an extension by an ele-
ment ¢ which is parallel to some element e of M while a series extension is a
coextension by an element ¢’ which is coparallel to some element. A matroid is
called series-parallel [1] if it can be obtained from a one element matroid by a
sequence of series and parallel extensions.

It is well known that series-parallel matroids are exactly the graphic matroids
of series-parallel networks, which are the graphs without a K4-minor. The latter
makes an inductive proof of Hadwiger’s conjecture for the case k = 3 almost
trivial: if G arises by a parallel extension from G’, any proper 3-coloring of G’
remains a proper 3-coloring of G, whereas, if G arises by subdividing an edge
e into e and ¢/, we have a free color for the new vertex. Translating this proof
into a proof for the resulting NZ-3 coflow in an orientation of G, the key point
arises in the case G’ = G/e (series extension), where the induction step relies on
the existence of a {0, £1}-valued coflow in G, say ¢g*, whose support is {e, e'}.
It has been shown [15, Theorem 3.8] that such a coflow, g*, exists in the coflow
lattice of any orientation of a uniform oriented matroid, and implies that this
class of matroids is 3-colorable. This motivates the following definition.

DEFINITION 3. Let O be an oriented matroid. We say that O is generalized
series-parallel (GSP) if every simple minor of O has a {0,£1}-valued coflow
which has exactly one or two nonzero entries.

By its definition, the class of GSP oriented matroids is closed under minors.
Note that an orientation of a regular matroid is GSP if and only if it is an
orientation of a series-parallel matroid.

THEOREM 4. Let O be a GSP oriented matroid on a finite set E without loops.
Then O has a NZ-3 coflow.

PROOF. We proceed by induction on |E|. If O is not simple, then it has two
parallel or antiparallel elements e and e¢’. Since O \ {¢’} is generalized series-
parallel without loops, by induction it admits a NZ-3 coflow which extends to
a NZ-3 coflow in O because every cocircuit contains either both or none of e
and €', and either always with the same or always with opposite sign. Thus, we



may assume O is simple and that O has a {0, +1}-valued coflow, say ¢g*, whose
support is {e, e’} (possibly with e = €’). By reorienting e’ if necessary, we may
assume that ¢g*(¢’) = 1. Let O’ = O/e. Then, O is a GSP oriented matroid
without loops and, hence, there exists a NZ-3 coflow f'* in ', which extends
to a coflow f* in O which is 0 on e and has entries from {+1,+2} elsewhere.
If f*(e’) € {—2,0,1}, then f* + ¢g* is a NZ-3 coflow in O. Otherwise we have
f(e") e {-1,2}, so f* — g* is a NZ-3 coflow in O.

A practical way to prove that every orientation of a matroid from a certain
minor-closed class is GSP is to show the existence of positive colines for that
class.

DEFINITION 5. Let M be a matroid. A copoint of M is a flat of codimension 1,
that is, a hyperplane. A coline is a flat of codimension 2. If L is a coline of M
and L C H, a copoint, then we say H is a copoint on L. The copoint is simple
(with respect to L) if |H \ L| = 1, otherwise it is multiple. A coline L is positive
if there are more simple than multiple copoints on L.

LEMMA 6. If an orientable matroid M has a positive coline, then every ori-
entation O of M has a {0,+1}-valued coflow which has exactly two nonzero
entries.

PROOF. Let L be a positive coline of M and O be some orientation of M. By
Proposition 4.1.17 of [4], the interval [L, 1] in the big face lattice of O has the
structure of the big face lattice of an even cycle. Here, each antipodal pair of
vertices of the even cycle corresponds to a copoint of L. Neighboring copoints
in this cycle are conformal vectors (see 3.7 in [4]). Since L is positive, by the
pidgeonhole principle there must exist two neighboring simple copoints D; and
Dy in the even cycle. Since both copoints are simple, (D; U Dg) \ L = {e, ez}.
Since they are conformal, 131 — 132 is a vector with exactly two non-zero entries
which are +1 or —1, namely on e; and es.

4. Bicircular Matroids

In this section we show that orientations of bicircular matroids are GSP
and hence 3-colorable by Theorem 4. Bicircular matroids form a minor-closed
subclass of the class of transversal matroids. Therefore, they are M (Ky)-free,
coordinatizable over the reals, and hence orientable.

DEFINITION 7. [20] Let G be a graph (loops and parallel edges allowed) with
vertex set V and edge set E. The bicircular matroid of G is the matroid B(G)
defined on E whose circuits are the subgraphs which are subdivisions of one of
the graphs: (i) two loops on the same vertex, (ii) two loops joined by an edge,
(iii) three edges joining the same pair of vertices. A matroid is bicircular if by
deleting its loops it becomes isomorphic to B(G) for some graph G.

Note that the original definition of a bicircular matroid did not allow loops.
The following is immediate from Definition 7.



PROPOSITION 8. 1. Bicircular matroids are closed under taking minors.

2. For any graph G, the edge set of every forest in G defines a closed set,
that is, a flat of B(G).

The following result suffices for our purpose.

THEOREM 9. Fvery simple bicircular matroid M of rank > 2 has a positive
coline.

PROOF. If M has two coloops, then deleting both of them results in a coline of
M which has exactly 2 simple copoints on it and no other copoints. If M has
exactly one coloop, say e, then we must have rank(M) > 3. Applying induction
on |M], we find that M /e has a positive coline which, together with e, gives a
positive coline of M. Similarly, if a connected component N of M has a positive
coline, then adding it to M \ N results in a positive coline of M. Thus, we
may assume M is connected, simple, of rank at least 3, and without coloops.
Therefore, M = B(G) for some connected graph G with |V(G)| = rank(M) > 3.
We select G to have the fewest possible loops. Let 77 be a spanning tree of G
and let v be a leaf of T7. Let {e1,ea,...,ex} be the set of non-loop edges of G
which are incident with v, for some k > 1. Since M is simple, v is incident to
at most one loop edge of G; we denote this loop edge by £ if it exists. If k =1,
then ¢ must exist, for otherwise e; is a coloop of M. But now we have that
B(G) = B(G') where G’ is the graph obtained from G by replacing ¢ with an
edge parallel to e;. This contradicts the choice of G. So we may assume k > 2.

Exactly one edge in {ej,es,...,ex} belongs to Ty, say e; € F(T1). Let
F=T —e andlet T; = F +¢;, for 1 <i < k. Then T; is a spanning tree
of G and v is a leaf of Ty, for 1 < i < k. By Proposition 8, the set L := E(F)
is a flat of M. Since L is also independent in M and |L| = |V(G)| — 2, L
is a coline of M. Also, for 1 < i < k, the set LU {e;} = E(T;) is a simple
copoint on L. If ¢ exists then L U {¢} is also a simple copoint on L. Every
remaining edge e € E(G) — L — {e1,e2,...,ex, £} has both of its endpoints in
the connected subgraph F — v, so the closure of L U {e} in M is the copoint
E — {e1,ea,... e, £}. There are no other copoints on L, and at most one of
them is multiple. Since k > 2, we have shown that L is a positive coline of M.

THEOREM 10. FEwery orientation of a bicircular matroid is GSP.

PROOF. The statement trivially holds for bicircular matroids of rank < 1. The
result now follows from Lemma 6, Theorem 9 and Proposition 8.

COROLLARY 11. Bicircular matroids are 3-colorable.

5. Open Problems and Conjectures

The definition of an oriented matroid being GSP does not seem to be related
to duality.



QUESTION 12. Are GSP oriented matroids closed under duality?

Since M (Ky) is not series-parallel, every GSP oriented matroid is M (Ky)-
free. Probably it would be too much to hope for the other inclusion:

QUESTION 13. Does there exist an M (K4)-free oriented matroid which is not
GSP?

The previous question begs the following, more fundamental one.
QUESTION 14. Does there exist an M (K4)-free matroid which is not orientable?

Not every M (K,4)-free matroid has a positive coline, an example being P.
We checked with Lukas Finschi’s database [7] that Pr has a unique reorientation
class. Although there is no positive coline, this class still is GSP. Every bicircular
matroid is a gammoid. Since P7 is not a gammoid, the following might be a
possible extension of Theorem 10 to the class of gammoids, which includes the
class of transversal matroids.

CONJECTURE 15. FEvery simple gammoid of rank at least two has a positive
coline.
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