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Abstract

We show that to each graceful labelling of a path on 2s + 1 vertices, s ≥ 2, there
corresponds a current assignment on a 3-valent graph which generates at least 22s

cyclic oriented triangular embeddings of a complete graph on 12s + 7 vertices. We
also show that in this correspondence, two distinct graceful labellings never give
isomorphic oriented embeddings. Since the number of graceful labellings of paths
on 2s+1 vertices grows asymptotically at least as fast as (5/3)2s, this method gives
at least 11s distinct cyclic oriented triangular embedding of a complete graph of
order 12s + 7 for all sufficiently large s.

1 Introduction

The dual version of the famous and more than 100 years old Map Colouring
Problem is to determine the smallest genus of an orientable (and a nonori-
entable) surface on which a given complete graph embeds. The problem re-
mained unsolved until the late 1960’s work of Ringel, Youngs and others [8].
The main tool of the solution were ‘current graphs’ used to generate rotation
systems of embeddings. In the case of embeddings on orientable surfaces, ro-
tation systems are in a one-to-one correspondence with oriented embeddings,
those with a preassigned orientation of the supporting surface. Soon it was
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realized that the methods of Ringel et al. are, in fact, covering construction
techniques in disguise; we recommend [5] for more history and details.

In order to illustrate the above we focus on constructions of oriented trian-
gular (and hence smallest genus) embeddings of the complete graph K12s+7.
In a more up-to-date language, a ‘current graph’ giving such an embedding
is a connected, trivalent graph on 4s + 2 vertices, embedded on an oriented
surface with a single face. We assume that each edge of the current graph has
a preassigned direction and that a ’current’ with values in Z12s+7 flows along
the edge (with the convention that the inverse of the current flows in the op-
posite direction). The current assignment is assumed to satisfy the Kirchhoff’s
Current Law, which is to say that the sum of the incoming currents is equal
to the sum of the outgoing currents at each vertex. The final assumption is
that the set of all (+/−) currents is equal to the set of non-zero elements
of Z12s+7. Methods of topological graph theory then allow one to ‘transform’
such a current graph into a cyclic oriented triangular embedding of K12s+7,
that is, an embedding in which Z12s+7 acts regularly on vertices as a group of
orientation-preserving automorphisms of the embedding.

Several papers have recently addressed lower bounds on the number of (pair-
wise non-isomorphic) oriented triangular embeddings of complete graphs. The
current record holders are surgical constructions of [3] and [4] where it is shown
that the number of triangular embeddings of Kn is bounded below by 2cn2

for
n in certain residue classes of some multiples of 12. These embeddings, how-
ever, are far from cyclic. Nota bene, a generous upper bound on the number
of oriented cyclic embeddings of Kn is (n− 2)! regardless of the face lengths,
which can be obtained by assigning an arbitrary rotation to one vertex and
carrying the rotation over to all other vertices by the cyclic action. (This is in
a sharp contrast with the upper bound (n− 2)!)n on the number of arbitrary
oriented embeddings of Kn.) Going back to our special case n = 12s + 7, in
order to obtain a large number of cyclic oriented triangular embeddings of
K12s+7 the above topological construction offers three freedoms of choice: The
choice of the trivalent graph orientably embeddable with a single face, the
choice of its single-face embedding, and the choice of the current assignment.
The first possibility has not yet been considered in the literature. In fact, there
seem to be just two trivalent graphs used in the past: The Ringel graph [8]
which we will use in Section 2 and the Youngs graph [10]. The second possi-
bility was exploited, for the Ringel graph, in [6] to show that K12s+7 has at
least 4s non-isomorphic cyclic oriented triangular embeddings.

In this paper we show that the choice of current assignment can also be used to
produce an exponential number of cyclic embeddings of K12s+7. Surprisingly,
such current assignments (and hence the cyclic embeddings) can be obtained
from graceful labellings of paths. We prove that, for s ≥ 2, to each graceful
labelling of a path on 2s+1 vertices there corresponds a current assignment on
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a 3-valent graph that gives at least 4s pairwise non-isomorphic cyclic oriented
triangular embeddings of K12s+7. Moreover, we show that this correspondence
has the property that two distinct graceful labellings never give isomorphic
oriented embeddings. Our ingredients are a construction of an exponential
number of graceful labellings of paths [1] and substantial results of [6] and [7]
on generating triangular embeddings of complete graphs from current graphs
and distinguishing embeddings that arise from different current assignments.

2 The result

Let G be a connected graph with n vertices and m edges. A labelling of G is any
one-to-one function f that assigns integers between 1 and m + 1 to vertices
of G. For each edge e = uv the value f(e) = |f(u) − f(v)| is the induced
edge-label; using the same symbol f for edge-labels will cause no confusion.
The labelling f is said to be graceful if the set of distinct induced edge-labels
coincides with the set {1, 2, . . . ,m}. Such labellings are of particular interest
for trees. By the famous and still unresolved Graceful Tree Conjecture, each
tree has a graceful labelling. So far only a few infinite classes of trees have
been proved to have graceful labellings. Here we will be interested only in
paths, which trivially have graceful labellings. In fact, by [1] the number of
such labellings of a path of length n grows exponentially with n.

The surprising connection between graceful labellings of paths and triangular
embeddings of complete graphs can be formally presented as follows.

Theorem 1 To each graceful labelling f of a path on 2s + 1 vertices, s ≥ 2,
there corresponds a collection Cf of 4s cyclic oriented triangular embeddings
of a complete graph on 12s + 7 vertices. Moreover, if f and g are distinct
graceful labellings of a path on 2s + 1 vertices, then no oriented embedding in
Cf is isomorphic to an oriented embedding in Cg.

PROOF. Let P be a path on 2s+1 vertices and let f be a graceful labelling
of P , so that f is a bijection from the vertex set of P onto the set of labels
{1, 2, . . . , 2s + 1}. Let H be a supergraph of P obtained by adding two new
vertices b and t together with the edge bt and the 4s + 2 edges of the form bu
and ut where u ranges over all vertices of P . The graph H triangulates the
plane; one may think of H as being embedded so that b and t are the ‘bottom’
and ‘top’ vertices while P shows up as a ‘horizontal’ path; see the part of Fig.
1 drawn in solid lines. We transform f to a function f ′ on the vertex set of
H defined by f ′(b) = 1, f ′(t) = 6s + 4, and f ′(u) = 3f(u) for each vertex u
of P . Observe that f ′ is a graceful labelling of the graph H, since the induced
edge-labels on the 2s edges of P and on the edge bt, on the 2s + 1 edges bu,
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and on the 2s + 1 edges ut, coincide with the sets of integers between 1 and
6s + 3 which are congruent to 0, 2, and 1, respectively.

Let H∗ be the dual graph to the (planar) graph H, shown in Fig. 1 in dashed
lines. The graph H∗ is, in fact, the 3-valent Ringel graph that underlies the cur-
rent graph construction of a cyclic orientable triangular embedding of K12s+7

given in Section 2.3 of [8]. We now transform the edge-labels of the graceful
labelling f ′ of H into a current assignment on H∗ as follows. Let us direct each
edge of H from the vertex carrying the smaller value of f ′ to the vertex with
the larger value. To describe the induced edge directions of the dual graph H∗

let us first fix a clockwise orientation of every face of the plane embedding of
H. We now direct every edge e∗ of H∗ towards the face whose orientation on
the face boundary agrees with the orientation of e. Finally, for any directed
edge e of H, the current f ∗(e∗) on the directed edge e∗ of H∗ dual to e is
defined to be equal to f ′(e).

t
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Fig. 1. The graph H and its dual H∗, the Ringel graph.

Consider a triangle with vertices u, v, w in the planar embedding of H. The
way the labelling f ′ was introduced implies that we may always choose the
notation for the three vertices such that the boundary of the triangle consists
of the directed path uvw from u to w and the directed edge uw from u to
w. Moreover, with this notation we have f ′(uv) + f ′(vw) = f ′(uw) for any
triangular face of H. It is easy to see that the above translates into the ‘dual
language’ as follows. At each vertex of H∗ we have either two incoming dual
directed edges and one outgoing edge, or vice versa. In the first case, the
sum of the currents on the incoming dual edges is equal to the current on the
outgoing dual edge; the situation in the second case is analogous. We conclude
that the current assignment f ∗ satisfies the Kirchhoff’s Current Law at each
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vertex of H∗.

So far, f ′ and f ∗ have been treated as integer-valued functions. From now on
we assume that the range of both f ′ and f ∗ is the group Z12s+7. Clearly, all
the above calculations and conclusions remain valid in this new setting.

Following the topological background reviewed briefly in the Introduction, we
now want to embed H∗ in an oriented surface with a single face. It is known (cf.
[5]) that all such oriented embeddings are in a one-to-one correspondence with
certain permutations which we shall for convenience call 1-rotation systems. To
describe these, consider each edge of H∗ to be formed by a pair of oppositely
directed edges (often called arcs). Let A be the set of arcs of H∗; it follows that
|A| is equal to twice the number of edges of H∗, Let θ be the involution on A
assigning to every arc its reverse. A 1-rotation system for H∗ is a permutation
π of A such that (1) each cycle of π is a cyclic permutation of arcs emanating
from a vertex of H∗, and (2) the permutation πθ is cyclic and of order |A|.

Next, we use results of [6] to describe certain set of single-face embeddings.
Our starting point is the observation that the 1-rotation system for the first
graph in Fig. 2 of [6] (which is the graph in Fig 1 for s = 1) where both v and w
receive clockwise ‘local rotations’ can easily be extended to the graphs H∗ for
any s ≥ 2. It follows that there exists a 1-rotation system π for H∗ such that
the cycles of π at the vertices v and w are (vw, vv1, vv2) and (wv, ww1, ww2),
respectively, as indicated by the arrows around v and w in Fig. 1. By Lemma
5 of [6], there exists a set S of 22s different 1-rotation systems σ for H∗ whose
restrictions to arcs emanating from v and w coincide with π. As we know from
[8] or [5], for each σ ∈ S the pair (f ∗, σ) determines a cyclic oriented triangular
embedding of K12s+7. Recalling that the current assignment f ∗ arose from a
graceful labelling f of the path P , we let Cf denote the collection of all oriented
embeddings derived from the 22s pairs (f ∗, σ), where σ ∈ S.

To finish the proof of the theorem it remains to show that for any two graceful
labellings f and g of P and for any two distinct 1-rotation systems σ, τ ∈ S,
the pairs (f ∗, σ) and (g∗, τ) determine isomorphic oriented embeddings if and
only if f = g and σ = τ (which also implies that each collection Cf contains 22s

pairwise non-isomorphic oriented embeddings). Fortunately, here we can rely
on a profound analysis of isomorphism of such embeddings, carried out in [6]
for a fixed current assignment and in [7] for arbitrary assignments. The most
general result about distinguishing embeddings arising from current graphs is
Theorem 2 of [7], dealing with unoriented embeddings that comprise nonori-
entable embeddings and orientable embeddings with unspecified orientation
of the surface. Making use of our convention that pairs of reverse arcs carry
opposite currents, the variation of Theorem 2 of [7] for oriented embeddings
that applies to our setting reads as follows:
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The pairs (f ∗, σ) and (g∗, τ) determine isomorphic oriented embeddings of
K12s+7 if and only if the graph H∗ admits an automorphism ϕ (regarded as a
permutation of the arc set A) and the group Z12s+7 admits an automorphism
α such that ϕσ(e) = τϕ(e) and g∗ϕ(e) = αf ∗(e) for every arc e ∈ A.

Suppose now that (f ∗, σ) and (g∗, τ) determine isomorphic oriented embed-
dings of K12s+7 where s ≥ 2 and let ϕ and α be as in the above statement.
The graph H∗ then has just four automorphisms which, in Fig. 1, may be
identified as the identity, the flips across the horizontal and the vertical axis
of symmetry, and the central rotation by 180o. If ϕ is one of the two flips,
then the condition ϕσ(e) = τϕ(e) is violated at arcs at v or w, since σ and
τ agree with the 1-rotation π on the vertices v and w by definition. Let ϕ be
the central rotation; observe that for the arc wv we have ϕ(wv) = vw. Since
the arc wv receives the current 6s + 3 in all the current assignments derived
from graceful labellings of P , from g∗ϕ = αf ∗ applied to e = wv we obtain
α(6s+3) = 6s+4. The unique such automorphism of Z12s+7 is α(j) = −j for all
j ∈ Z12s+7. Using this information about α and applying the previous identity
to the arc v1v (see Fig. 1) gives g∗(w1w) = g∗ϕ(v1v) = −f ∗(v1v) = f ∗(vv1).
This, however, contradicts the fact that all our current assignments derived
from graceful labellings of P assign to the arcs vv1 and w1v a positive integer
smaller than 6s + 3 and congruent to 1 and 2, respectively. Finally, if ϕ is the
identity, then α must be the identity as well, and hence σ = τ and f ∗ = g∗.
This completes the proof. 2

3 Remarks

Let γ(n) denote the number of graceful labellings of a path on n vertices. In
[1] it was proved that γ(n) > (5/3)n for all sufficiently large n. The number of
graceful labellings on the path P considered in the previous proof is therefore
certainly larger than (5/3)2s for all sufficiently large s. Since 4s(5/3)2s > 11s,
we have the following consequence of our main result.

Corollary 2 For any s ≥ 2 there are at least 4sγ(2s) pairwise non-isomorphic
oriented triangular embeddings of K12s+7. In particular, for any sufficiently
large s the number of such embeddings is larger than 11s. 2

As mentioned in the Introduction, to construct a large number of cyclic ori-
ented triangulations by complete graphs treher are only three choices: Vary
the single-face embeddings of a suitable current graph, vary the current as-
signment, or vary the current graph itself (which has not yet been considered).
Our approach combines the first two choices. Moreover, since computational
evidence of [1] suggests that the number of graceful labellings of a path on n
vertices is at least (cn)n for some c > 0, our main result appears to have a far
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better potential for generating large numbers of complete triangulations than
any of the previously used methods.

It should be pointed out that a similar potential as regards the order of mag-
nitude lies in trying to work with different trivalent graphs. The first obvious
candidates are the (2s)! graphs one obtains by varying the Ringel-Youngs
graph H∗ by differently reattaching the ‘bottom rungs’ of the ladder, which
certainly gives more than (cs)2s nonisomorphic graphs for some c > 0. It is
not clear, however, whether such graphs admit suitable current assignments.

For completeness, we note that graphs admitting an orientation and a current
assignment as observed on H∗ have appeared in the literature under the name
conservative graphs [2]. A topological interpretation of conservative graphs
that agrees with what has been presented in Secion 2 was given in [9].
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