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COLORING-FLOW DUALITY OF EMBEDDED GRAPHS

MATT DEVOS, LUIS GODDYN1, BOJAN MOHAR2, DIRK VERTIGAN3, AND XUDING
ZHU4

Abstract. Let G be a directed graph embedded in a surface. A map φ :
E(G) → R is a tension if for every circuit C ⊆ G, the sum of φ on the forward
edges of C is equal to the sum of φ on the backward edges of C. If this
condition is satisfied for every circuit of G which is a contractible curve in the
surface, then φ is a local tension. If 1 ≤ |φ(e)| ≤ α − 1 holds for every e ∈
E(G), we say that φ is a (local) α-tension. We define the circular chromatic

number and the local circular chromatic number of G by χc(G) = inf{α ∈
R | G has an α-tension} and χloc(G) = inf{α ∈ R | G has a local α-tension},
respectively. The invariant χc is a refinement of the usual chromatic number,
whereas χloc is closely related to Tutte’s flow index and Bouchet’s biflow index
of the surface dual G∗.

From the definitions we have χloc(G) ≤ χc(G). The main result of this
paper is a far reaching generalization of Tutte’s coloring-flow duality in planar
graphs. It is proved that for every surface X and every ε > 0, there exists an
integer M so that χc(G) ≤ χloc(G) + ε holds for every graph embedded in X

with edge-width at least M , where the edge-width is the length of a shortest
noncontractible circuit in G.

In 1996, Youngs discovered that every quadrangulation of the projective
plane has chromatic number 2 or 4, but never 3. As an application of the main
result we show that such ‘bimodal’ behavior can be observed in χloc, and thus
in χc for two generic classes of embedded graphs: those that are triangulations
and those whose face boundaries all have even length. In particular, if G is
embedded in some surface with large edge-width and all its faces have even
length ≤ 2r, then χc(G) ∈ [2, 2+ε]∪ [ 2r

r−1
, 4]. Similarly, if G is a triangulation

with large edge-width, then χc(G) ∈ [3, 3+ε]∪[4, 5]. It is also shown that there
exist Eulerian triangulations of arbitrarily large edge-width on nonorientable
surfaces whose circular chromatic number is equal to 5.

1. Introduction

Our discussion is concerned with tensions, local tensions, and flows on embedded
graphs. Although rigorous definitions will be postponed until Section 3, some
informal description needs to be stated here. By default all graphs are finite directed

1991 Mathematics Subject Classification. 05C10, 05C15
Received by editors April 7, 2003. Revised version received October 3, 2003.

Key words and phrases. Graph theory, coloring, flow, tension, local tension, circular chromatic
number, surface, edge-width, triangulation, quadrangulation, locally bipartite.

1Supported in part by the National Sciences and Engineering Research Council of Canada,
and the Pacific Institute for the Mathematical Sciences.

2Supported in part by the Ministry of Science and Technology of Slovenia, Research Program
J1–0507–0101.

3Supported in part by the National Security Agency, grant number MDA904-01-0014.
4Supported in part by ROC National Science Council Grant NSC 91-2115-M-110-003.

c©2003 American Mathematical Society

1



2 M. DEVOS, L. GODDYN, B. MOHAR, D. VERTIGAN, AND X. ZHU

graphs, where loops and multiple edges are allowed. A walk or circuit in a graph G
is a walk or circuit in the undirected graph which underlies G. A surface X is a
closed compact connected 2-manifold. An X-embedded graph is a graph G which
is topologically embedded in X in such a way that each connected component of
X−G, or face, is homeomorphic to a disc. Where no confusion arises, we use G to
refer both to an X-embedded graph, and to the underlying abstract directed graph.

Let G be an embedded directed graph. A map φ : E(G) → R is a flow if at
every vertex the sum of the values on the incoming edges is equal to the sum on
the outgoing edges. We say that φ is an α-flow if 1 ≤ |φ(e)| ≤ α−1 holds for every
e ∈ E(G). Informal definitions of α-tension and local α-tension are given in the
abstract. We define three invariants:

χc(G) = inf{α ∈ R | G admits an α-tension},

χloc(G) = inf{α ∈ R | G admits a local α-tension},

φc(G) = inf{α ∈ R | G admits an α-flow}.

They are called the circular chromatic number , the local circular chromatic number ,
and the circular flow index , respectively. These invariants, and most results in this
paper, are independent of the graph orientation. For example, if we reverse the
orientation of e ∈ E(G), then by replacing φ(e) by −φ(e) we preserve the property
that φ is a (local) α-tension or α-flow.

The chromatic number of a graph G is given by χ(G) = dχc(G)e, c.f., e.g. [37].
Thus, we may view χc as a refinement of the usual notion of chromatic num-
ber. There are close connections between χc and other graph properties involving
orientations, homomorphisms and group valued tensions. As such, there has been
considerable interest in the invariant χc(G). We refer the reader to [37] for a survey.
All existing literature on χloc(G) refers to this invariant indirectly, via the dual em-
bedded graph G∗. In particular, if the surface is orientable, then χloc(G

∗) = φc(G)
and dχloc(G

∗)e is precisely the flow index of Tutte [34]. If the surface is nonori-
entable, then dχloc(G

∗)e is the biflow index of Bouchet [2]. Thus χloc both unifies
and refines these two indices for embedded graphs.

Our main result reveals a close connection between χc(G) and χloc(G) for em-
bedded graphs. Based on the above discussion we have

χloc(G) ≤ χc(G) ≤ χ(G) (1.1)

for every embedded graph G. The first two invariants in (1.1) are equal for plane
graphs and projective plane graphs, by Corollary 3.3, but they can differ on other
surfaces. Our main result is that χloc(G) and χc(G) are very close if an X-embedded
graph G has high edge-width. We recall that the edge-width of G, denoted by
edgewidth(G), is the length of a shortest circuit in G which forms a noncontractible
curve in X. We define edgewidth(G) = ∞ if X is simply connected.

Theorem 1.1 (Main Theorem). For every surface X and every ε > 0, there exists
an integer M so that every loopless X-embedded graph G with edgewidth(G) ≥ M
satisfies

χloc(G) ≤ χc(G) ≤ χloc(G) + ε.

Theorem 1.1 is proved in Section 4. It is a special case of Theorem 4.1 which is
concerned with group-valued tensions.

We apply this result to two families of embedded graphs for which χloc exhibits
interesting behavior. An embedded graph G is even-faced if all its faces have even
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length. A triangulation is an embedded graph whose faces all have length three. In
Section 5, we show that even-faced embedded graphs and triangulations come in two
types: odd and even type. In both cases, the type of G depends on the ‘signature
parity’ of certain closed walks in the dualG∗ (although, in strikingly different ways).
We shall see that this distinction is reflected in the value of χloc(G).

Theorem 1.2 (Bimodality of χloc). Let G be an embedded graph.

(a) If G is even-faced with maximum face length 2r, then either

χloc(G) = 2 (even type) or χloc(G) ≥
2r

r − 1
(odd type).

(b) If G is a triangulation, then either

χloc(G) = 3 (even type) or χloc(G) ≥ 4 (odd type).

Applying Theorem 1.1 and some upper bounds from Theorem 2.2, we have the
following.

Corollary 1.3 (Bimodality of χc). For any surface X and any ε > 0, there exists
an integer M such that, for every X-embedded graph G with edgewidth(G) ≥M ,

(a) if G is even-faced with maximum face length 2r, then

χc(G) ∈ [2, 2 + ε] ∪ [2r/(r − 1), 4];

(b) if G is a loopless triangulation, then

χc(G) ∈ [3, 3 + ε] ∪ [4, 5].

Moreover, we show (cf. Theorem 6.6) that certain Eulerian triangulations of
large edge-width on nonorientable surfaces have circular chromatic number equal
to 5. These results completely generalize and explain Youngs’ observation [36] that
projective plane quadrangulations never have chromatic number three. They also
strengthen results on the chromatic number of quadrangulations [1, 26], even-faced
graphs [17, 23], and Eulerian triangulations [18].

Remark 1.4. A little more can be said in some special cases:

(1) If X is the plane or projective plane, the invariant χc(G) is relatively well be-
haved. For example, we may set ε = 0 in Theorem 1.1 and in Corollary 1.3
(cf. Corollary 3.3). If G is even-faced, then there is an exact formula for
χc(G) (cf. Example 6.8). In particular, every projective planar even-faced
graph G satisfies χc(G) = 2 + 2/k for some k ∈ {0, 1, . . . ,∞} (where we
interpret 1/∞ = 0 and 1/0 = ∞).

(2) The upper bound ‘4’ can be replaced by ‘3’ in part (a) of Corollary 1.3
provided all circuits in G have length at least 6 (cf. Theorem 2.2(d)). More
generally, it might be true that we can replace ‘4’ with ‘2 + 2/(g − 1)’
provided all circuits have length at least 2g.

(3) The interval ‘[4, 5]’ in Corollary 1.3(b) can be replaced by ‘{4}’ if X is
orientable and G is Eulerian. This is implied by a result of Hutchinson et
al. [18] which states that all such triangulations of sufficiently large edge-
width satisfy χ(G) ≤ 4. If X is orientable but G has odd-degree vertices,
then one would be able to replace ‘[4, 5]’ by ‘[4, 4+ε]’ provided a conjecture
of Grünbaum (Conjecture 2.1(b)) holds.

In Section 6 we provide examples that show no further improvements of this type
are possible.
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When the surface X is orientable, these results have consequences involving flows
in the surface dual. Let G∗ be the unoriented X-embedded graph which is the
surface dual of G. Using a global orientation of X, we may direct the edges of G∗

so that each edge e∗ ∈ E(G∗) crosses left to right over the corresponding dual
edge e ∈ E(G). It follows from definitions that a function φ : E(G) → R is a
local α-tension of G if and only if φ∗ : e∗ 7→ φ(e) is an α-flow in G∗. Thus,
duality exchanges local tensions with flows on orientable surfaces, and we have the
relation φc(G

∗) = χloc(G). If X is the sphere, every local tension is also a tension,
so χc(G) = χloc(G) = φc(G

∗). Indeed, this is an early observation of Tutte [12],
usually recognized as flow-coloring duality, which provided motivation for our work.
The following corollary of Theorem 1.1 generalizes this to orientable surfaces.

Corollary 1.5 (Approximate Duality). Let X be an orientable surface and let
ε > 0. There exists an integer M such that every loopless X-embedded graph G with
edgewidth(G) ≥M satisfies φc(G

∗) ≤ χc(G) ≤ φc(G
∗) + ε.

When G and G∗ are embedded in a surface which is not orientable, G∗ cannot be
consistently oriented, and the duality between local tensions of G and flows of G∗

no longer holds. In this case, local tension is the dual notion of a biflow , see, e.g.,
[2, 5]. Thus, any results about local tensions for G can be formulated as results
about flows (respectively, biflows) for the dual graph G∗ in the orientable (respec-
tively, nonorientable) case. In order to get a unified treatment of the orientable
and nonorientable surfaces, we will henceforth concentrate on tensions and local
tensions.

2. Known Results and Conjectures

We briefly survey the state of knowledge regarding the invariants χc, χloc, and φc.
The bimodal behaviors reported in Corollary 1.3 appear nowhere in the literature
except for Youngs’ observation [36] that a projective plane quadrangulation has
chromatic number either 2 or 4. The apparent singularity of Youngs’ example
is explained by an inspection of Corollary 1.3; in any other situation, either ε is
positive, or 2 + 2/(r− 1) ≤ 3, so bimodal behaviour is not detectable via the crude
invariant χ = dχce. The circular chromatic number is needed in order to see that
Youngs’ example is not an isolated curiosity.

Other than [36], the existing literature consists primarily of proven and conjec-
tured upper bounds on the integer values dφc(G)e, dχloc(G)e and χ(G) = dχc(G)e
for various families of embedded and abstract graphs G. Most of these bounds
are best possible due to examples given in Section 6. However, there is now the
question as to whether these upper bounds are also best possible for the refined
parameters φc, χloc and χc.

The girth of G, girth(G), is the minimum length of a circuit in G. The cogirth
of G, cogirth(G), is the minimum cardinality of a nonempty edge cut in G. For
any graph G we have χc(G) < ∞ (resp. φc(G) < ∞) if and only if girth(G) ≥ 2
(cogirth(G) ≥ 2). In contrast, it is possible that χloc(G) is finite for an embedded
graph G with loops. For example, the unique graph G embedded on the Klein
bottle consisting of one vertex and two one-sided loops has χloc(G) = 2. In general
one expects stronger upper bounds on χc(G) (and φc(G)) when higher girth (and
cogirth) requirements are imposed upon a family of graphs. For embedded graphs,
one often forbids short noncontractible circuits; embedded graphs with high edge-
width are ‘locally planar’ and thus exhibit bounded chromatic properties. One
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should keep in mind that X-embedded graphs G satisfy girth(G) ≤ edgewidth(G),
but cogirth(G) is generaly unrelated to edgewidth(G∗).

Most published results and conjectures regarding φc(G) make no reference to a
surface, but do refer to cogirth(G). For a positive integer d, we define

φc(d) = sup{φc(G) | G is a graph with cogirth(G) ≥ d}.

Tutte [34] initiated the study of α-flows when he conjectured φc(2) ≤ 5 and
φc(4) ≤ 3. Seymour [29] proved that φc(2) ≤ 6, and Jaeger [19] proved that
φc(4) ≤ 4. Jaeger [20] further conjectured that φc(4k) ≤ 2 + 1

k for any positive
integer k. Little progress has been made on these beautiful conjectures. Two
more conjectures involve embedded graphs. At a meeting in Donovaly in 1992,
Neil Robertson proposed that there exists an absolute constant k such that ev-
ery X-embedded graph G with cogirth(G) ≥ 2 and edgewidth(G∗) ≥ k satisfies
φc(G) ≤ 4. We must have k ≥ 4 here because of Example 6.1. Grünbaum [16] has
conjectured that k = 3 suffices here, provided that X is orientable.

If X is orientable, then all results and conjectures regarding flows may be restated
in terms of the local chromatic number. For example, the above conjectures of Tutte
and Grünbaum attractively specialize.

Conjecture 2.1. Let G be an X-embedded graph where X is orientable.

(a) If girth(G) ≥ 2, then χloc(G) ≤ 5.
(b) If girth(G) ≥ 3, then χloc(G) ≤ 4.
(c) If girth(G) ≥ 4, then χloc(G) ≤ 3.

When X is not orientable, these conjectured upper bounds on χloc must be
weakened. Bouchet [2] conjectures that every loopless X-embedded graph G satis-
fies χloc(G) ≤ 6. DeVos [5] proved that such graphs satisfy χloc(G) ≤ 12. This is in
contrast to the fact there exists no general bound on χc(G). DeVos [private commu-
nication] has proposed that Bouchet’s conjecture can be improved to χloc(G) ≤ 5
provided edgewidth(G) ≥ k for some absolute constant k (possibly k = 4). Again,
Example 6.1 shows this is false when k = 3. It is possible that these conjectured
upper bounds can be further tightened by imposing an edge-width requirement
on G.

Ringel’s map color theorem [28] asserts that the best upper bound on χc(G)
among loopless X-embedded graphs is of order Θ(g1/2) where g denotes the genus
of X. Upper bounds on χc(G) for loopless X-embedded graphs must depend on
the genus also when we consider graphs of any given girth. However, the situation
changes for ‘locally planar’ graphs. We state together four relevant results.

Theorem 2.2. For any surface X there exists an integer M such that for any
X-embedded graph with edgewidth(G) ≥M we have all of the following.

(a) If girth(G) ≥ 2, then χc(G) ≤ 5.
(b) If girth(G) ≥ 4, then χc(G) ≤ 4.
(c) If girth(G) ≥ 5, then χc(G) ≤ 3.

Statements (a) and (c) were proved by Thomassen [31, 32]. Statement (b) was
proved by Fisk and Mohar [8]. Weaker versions of statement (c), requiring that
girth(G) ≥ 6, appear in [8, 10, 17]. However, the proof in [8] only requires that M =
O(log(genus(X))), whereas Thomassen’s proofs require at least exponential edge-
width. Since there are graphs of arbitrarily large chromatic number and girth [6],
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and since embedded graphs G satisfy edgewidth(G) ≥ girth(G), the bound M in
Theorem 2.2 must depend on the genus of X.

Examples 6.2 and 6.5 show that none of the bounds in Theorem 2.2 can be
improved even fractionally for general surfaces X. In fact these examples satisfy
χloc(G) = χc(G), so we can not improve Theorem 2.2 even with χc(G) replaced by
χloc(G). However, if X is orientable, Theorem 1.1 offers two possible improvements.
Grünbaum’s Conjecture 2.1(b) would imply that all loopless graphs embedded on a
fixed orientable surface with sufficiently high edge-width satisfy χc(G) ≤ 4+ε. Such
a result would be best possible because of the Fisk triangulations (Example 6.7).
The truth of Conjecture 2.1(c) would further improve this bound to χc(G) ≤ 3 + ε
provided, additionally, that G is triangle-free.

3. Background and Definitions

Again, all graphs considered in this paper are finite and directed with possible
multiple edges and loops. Loops are understood to be directed, with an outgoing
and an incoming end incident with the same vertex. A walk in G refers to a walk
in the undirected graph which underlies G. A circuit of G is a nontrivial simple
closed walk in G. As usual, the origin and direction of a circuit are often irrelevant.

We assume basic knowledge about (2-cell) embeddings of graphs in surfaces,
cf. [24]. However, we shall use a slightly less standard treatment of embedded
graphs where each edge and each face is oriented. An embedded graph G is a triple
(V (G), E(G), F (G)) where (V (G), E(G)) is a connected directed graph and F (G)
is a finite set of faces . Associated with every face R ∈ F (G) is a boundary walk
of R, which is a list v0, e1, v1, . . . , ek, vk of vertices and edges such that v0 = vk and
such that vi−1 and vi are the endpoints of the edge ei for every 1 ≤ i ≤ k. We say
that the face R has length k, and that R is incident with each vertex and edge in
its boundary walk. The boundary of R is just the boundary walk of R, but without
specific reference to the direction or origin of the walk.

There are two conditions that the set of face boundaries should satisfy. First,
every edge occurs precisely twice overall among the boundaries of all of the faces,
either once in two distinct boundaries, or twice in one. Two edges e and f are
consecutive at v if either e, v, f or f, v, e is a consecutive subsequence of some
boundary walk. The second requirement is that for each vertex v, the edges incident
with v can be enumerated e1, e2, . . . , ed in such a way that ei and ei+1 (index
modulo d) are consecutive at v for i = 1, . . . , d. This cyclic order is called the local
rotation at v.

For every embedded graph G, we construct a topological space denoted by |G| as
follows. If R is a face with boundary walk v0, e1, v1, . . . , ek, vk, then R is associated
with a regular k-gon π(R) ⊆ R2. The vertices and edges of π(R) correspond to
those in the boundary of R. We call the ith edge of π(R) a copy of ei ∈ E(G). We
obtain |G| from the disjoint union of these polygons by identifying both copies of
every edge e ∈ E(G) according to their orientations. Because of the local rotation
condition, the topological space |G| is a compact connected 2-manifold without
boundary, which is hereafter called a surface. Each vertex of G is associated with
a point in |G|, and each edge of G is associated with an arc in |G|. By deleting
from |G| the interior of π(R) for some R ∈ F (G), one obtains an embedding of G
on a closed bordered surface which we denote |G| − R. For any surface X, we say
that G is X-embedded if |G| is homeomorphic to X.
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For every vertex v ∈ V (G) and edge e ∈ E(G), we define:

〈v, e〉 =






0 if v and e are not incident
−1 if v is the tail of e

1 if v is the head of e.

If W = v0, e1, v1, . . . , ek, vk is a walk of G, then we define

〈e,W 〉 =
∑

{1≤i≤k|e=ei}

〈vi, ei〉.

We say that e is a forward edge of W if 〈e,W 〉 > 0, and that e is a backward edge
of W if 〈e,W 〉 < 0. If W is the boundary walk of a face R, then a forward edge of
R is a forward edge of W , and we write 〈e,R〉 instead of 〈e,W 〉. In this case we
have 〈e,R〉 ∈ {−2,−1, 0, 1, 2}, where 〈e,R〉 ∈ {−2, 0, 2} if e appears twice in the
boundary of R. Next, we define the function τ : E(G) → Z by the following rule:

τ(e) =
1

2

∑

R∈F (G)

〈e,R〉.

Note that τ(e) ∈ {−1, 0, 1} for every e ∈ E(G). Further, τ(e) = 1 if e is a forward
edge of two (not necessarily distinct) faces, τ(e) = −1 if e is a backward edge of
two faces, and τ(e) = 0 if e is forward in one face and backward in another. Based
on this, we define the sign of G to be the map σ : E(G) → Z given by the rule

σ(e) = (−1)τ(e).

The notion of the sign is equivalent to what is known as the signature of the dual
graph (cf., e.g., [24]). Figure 1 may help the reader with these definitions.

���

�
���

��� �
	���
����� �
	������� �
	������� �
	���
�� ��� �
	����

Figure 1. Effect of edge and face orientations on τ and σ.

For any embedded graph G, we may obtain a new embedded graph by reversing
an edge e ∈ E(G). This has the effect of changing the signs of 〈v, e〉, 〈e,R〉 and τ(e)
(for R ∈ F (G) and v ∈ V (G)), but has no effect on σ(e) and |G|. An edge-
reorientation of G is any graph obtained from G by reversing a subset of E(G).
Similarly, we may obtain a new embedded graph by reversing the boundary of a
face R. This involves replacing the boundary walk of R by its reverse. Reversing
the boundary of R changes 〈e,R〉 to −〈e,R〉 for every e ∈ E(G) and changes σ(e) to
−σ(e) for every edge e with 〈e,R〉 = ±1. This change has no effect on |G|. An face-
reorientation of G is any graph obtained from G by reversing a subset of F (G). We
say that |G| is orientable if the function σ may be changed into the constant 1 map
by some face-reorientation of G. Although edge and face orientations are essential
for our definitions, all of our results will be independent of these orientations.

The surface classification theorem states that every surface is homeomorphic to
exactly one of Si or Nj , where i ≥ 0 and j ≥ 1. The value of i or j (the genus)
indicates the number of handles (Si) or crosscaps (Nj) that must be added to a
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sphere to obtain the surface. We have that |G| is orientable if and only if G is
Si-embedded for some i ≥ 0. We write X = X′ to indicate that X and X′ are
homeomorphic surfaces.

If G is an embedded graph, we define its surface dual graph G∗ which is an
unoriented graph embedded in the same surface. The vertices of G∗ are the faces
of G. For every e ∈ E(G) there corresponds an (unoriented) edge e∗ ∈ E(G∗)
connecting the two (possibly identical) faces R,R′ ∈ V (G∗) whose boundaries con-
tain e. The edge e∗ is drawn in the natural way on the surface. Face boundary
walks in G∗ correspond to local rotations at vertices of G, and vice versa. A se-
quence ω = R0e1R1e2 . . . Rk−1ekRk of faces and edges of G is called a dual walk
of G provided that R0e

∗
1R1e

∗
2 . . . Rk−1e

∗
kRk is a walk in G∗. We say that ω is closed

if Rk = R0, and is simple if Ri 6= Rj for 0 ≤ i < j < k. A closed dual walk ω

is one-sided if
∏k

i=1 σ(ei) = −1. Otherwise, ω is two-sided . A two-sided simple
closed dual walk ω in G corresponds to the topological cylinder ∪R∈F (ω)π(R) in |G|,
whereas one-sided simple closed dual walks correspond to Möbius bands. Let us
observe that |G| is orientable if and only if every simple closed dual walk of G is
two-sided, cf. [24].

Let G be a directed graph or an embedded graph, and let Γ be an additive abelian
group. A 0-chain (with respect to Γ) is a map from V (G) to Γ, a 1-chain (with
respect to Γ) is a map from E(G) to Γ, and a 2-chain (with respect to Γ) is a map
from F (G) to Γ. For i = 0, 1, 2, the i-chains form a group under componentwise
addition, which we denote by Ci(G,Γ).

If c ∈ C0(G,Γ), then we define the coboundary of c to be the map δc ∈ C1(G,Γ)
given by the rule δc(e) =

∑
v∈V (G)〈v, e〉c(v). If c ∈ C1(G,Γ), then we define

the coboundary of c to be the map δc ∈ C2(G,Γ) given by the rule δc(R) =∑
e∈E(G)〈e,R〉c(e). If c ∈ C1(G,Γ), then we define the boundary of c to be the

map ∂c ∈ C0(G,Γ) given by the rule ∂c(v) =
∑

e∈E(G)〈v, e〉c(e). If c ∈ C2(G,Γ),

then we define the boundary of c to be the map ∂c ∈ C1(G,Γ) given by the rule
∂c(e) =

∑
R∈F (G)〈e,R〉c(R).

If c1 is a 1-chain and c1 = δc0 for some 0-chain c0, then we call c1 a tension or
a Γ-tension. If ∂c1 = 0 then we call c1 a flow or a Γ-flow . If G is an embedded
graph and δc1 = 0, then we call c1 a local tension or a local Γ-tension. If c1 = ∂c2

for some c2 ∈ C2(G,Γ) then we call c1 a facial flow or a facial Γ-flow .
Of particular interest is the additive group of the reals R, because real valued

tensions, local tensions and flows are used to define the invariants χc, χloc and φc.
We denote the set of tensions, local tensions, flows, and facial-flows by T (G,Γ),

L(G,Γ), F(G,Γ), and K(G,Γ), respectively. Note that all four of these sets are
subgroups of C1(G,Γ). Further, δδc = 0 for every 0-chain c and ∂∂c = 0 for every
2-chain c, so T (G,Γ) is a subgroup of L(G,Γ) and K(G,Γ) is a subgroup of F(G,Γ).

Let φ ∈ C1(G,Γ), let d ∈ C1(G,Z), and let g ∈ Γ. We define gd ∈ C1(G,Γ) and
d · φ ∈ Γ by the following rules:

(gd)(e) = d(e)g ,

d · φ =
∑

e∈E(G)

d(e)φ(e).

The following arises from the definitions.
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Proposition 3.1.

(a) T (G,Γ) = {φ ∈ C1(G,Γ) | d · φ = 0 for every d ∈ F(G,Z)}.
(b) L(G,Γ) = {φ ∈ C1(G,Γ) | d · φ = 0 for every d ∈ K(G,Z)}.

For any embedded graph G, the function τ ∈ C1(G,Z) plays an important role.
By its definition, 2τ is an integer sum of facial flows of the form e 7→ 〈e,R〉. In
particular, τ is an integer valued member of F(G,R). Since the space of integer
flows F(G,Z) is a regular chain group (cf. Tutte [35]), it follows that

τ ∈ F(G,Z) and 2τ ∈ K(G,Z). (3.1)

We define the homology group H1(G,Γ) to be F(G,Γ)/K(G,Γ) and we define
the cohomology group H1(G,Γ) to be L(G,Γ)/T (G,Γ). These groups depend only
on |G| and not on the particular structure of the graph (see, e.g. [9, 15]), so for
a surface X one can define H1(X,Γ) (H1(X,Γ)) to be the homology (cohomology)
group of some (and hence any) X-embedded graph. The group H1(G,Γ) may
be viewed as a measure of the difference between the spaces of local tensions and
tensions of G. The point of this paper is to show that under the right circumstances,
it is possible to change a local tension of an embedded graph to a tension by ‘small
adjustments’ on each edge. As such, the cohomology group H1(G,Γ) plays a key
role.

For any abelian group Γ, we let Inv(Γ) denote the subgroup of Γ consisting of
the elements of order at most 2. Then the cohomology groups of the surfaces are
(cf., e.g., [15]):

H1(Si,Γ) ∼= Γ2i and H1(Nj ,Γ) ∼= Γj−1 × Inv(Γ).

In particular, any graph G embedded in N1 satisfies L(G,Γ)/T (G,Γ) ∼= Inv(Γ).
Thus we have the following.

Proposition 3.2. Let G be an N1-embedded graph, and let Γ be an abelian group.
Then every local Γ-tension on G is a Γ-tension on G if and only if Inv(Γ) = {0}.

Observing that Inv(R) = {0}, we have the following.

Corollary 3.3. For any graph G embedded on the sphere or projective plane we
have χloc(G) = χc(G).

It is worth mentioning that on all other surfaces there exist graphs with arbi-
trarily large edge-width satisfying χloc(G) < χc(G).

We will use Proposition 3.1 to detect if a local tension is a tension, so the
homology group H1(X,Z) also plays a role in our argument. It is well-known [9, 15]
that

H1(Si,Z) ∼= Z
2i and H1(Nj ,Z) ∼= Z

j−1 × Z/2Z.

In particular, Inv(H1(X,Z)) is trivial if and only if X is orientable. For any X-
embedded graphG and any flow ψ ∈ F(G,Z), let 〈ψ〉 denote the coset ψ+K(G,Z) ∈
H1(G,Z). This coset is called the homology class of ψ. Thus 〈0〉 is the set of facial
Z-flows in G. We have from (3.1) that 〈τ〉 ∈ Inv(H1(G,Z)). Thus τ ∈ K(G,Z) if X

is orientable. Conversely, if τ ∈ K(G,Z), then one can transform τ to be identically
zero by reversing some faces of G, so X is orientable. Thus we have

Inv(H1(G,Z)) =

{
{〈0〉} if |G| is orientable
{〈0〉, 〈τ〉} if |G| is not orientable.

(3.2)
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For certain groups Γ, it is not true that every local Γ-tension can be modified
to a Γ-tension by means of ‘small adjustments’. In Section 5 we offer an example
illustrating this. In Theorem 4.1 we show that such an adjustment is possible
provided the local tension satisfies an additional property. A local Γ-tension φ is
strong if it satisfies

τ · φ = 0.

Let L+(G,Γ) denote the set of strong local Γ-tensions of G. In view of Proposi-
tion 3.1(b) we see that L+(G,Γ) is the subgroup of L(G,Γ) defined by

L+(G,Γ) = {φ ∈ C1(G,Γ) | d · φ = 0 for every d ∈ {τ} ∪ K(G,Z)}. (3.3)

Of course one may substitute for ‘τ ’ in (3.3) any other element of the homology
class 〈τ〉. Consequently, the definition of ‘strong’ does not depend on a particular
face orientation of G. If φ is a local Γ-tension of G, then from (3.1) we have
2(τ · φ) = (2τ) · φ = 0. Thus τ · φ ∈ Inv(Γ). Using this, the following is easily
proved.

Proposition 3.4. If |G| is orientable or Inv(Γ) = {0}, then L+(G,Γ) = L(G,Γ).
In particular, every local R-tension is a strong local R-tension.

The group containment relations are

T (G,Γ) ≤ L+(G,Γ) ≤ L(G,Γ)

with L(G,Γ)/L+(G,Γ) ∼= Inv(Γ). Like the cohomology group, the quotient group
H+(G,Γ) = L+(G,Γ)/T (G,Γ) depends only on the surface |G|. So, for a surface X,
we define H+(X,Γ) to be H+(G,Γ) for any X-embedded graph G. In comparison
with the cohomology groups, we have

H+(Si,Γ) ∼= Γ2i and H+(Nj ,Γ) ∼= Γj−1.

Let G be an embedded graph. For any walk W in G we define the walk indicator
map IW ∈ C1(G,Z) by the rule

IW (e) = 〈e,W 〉.

If W is a closed walk, then IW ∈ F(G,Z). If, additionally, W is a contractible curve
on |G|, then IW ∈ K(G,Z) is a facial flow. If IW /∈ K(G,Z), but 2IW ∈ K(G,Z),
then we say that W is a semifacial walk . By (3.1) and (3.2) of Section 3, W is
semifacial if and only if |G| is not orientable and 〈IW 〉 = 〈τ〉. If W is semifacial,
then so is its reverse, so we may speak of a semifacial walk without reference to its
orientation. A circuit C is semifacial if and only if there is some face-reorientation
of G so that τ(e) is nonzero (or σ(e) is negative) exactly on the edges e of C.
Deleting from |G| the closed arcs corresponding to the edges of a semifacial circuit
results in an orientable (bordered) surface.

Let φ ∈ C1(G,Γ). A closed walk W is conservative for φ if IW ·φ = 0. Let Y be
a set of closed walks in G. We say that Y generates H1(G,Z) if {〈IW 〉 | W ∈ Y }
generates H1(G,Z). The following allows one to test whether a local Γ-tension is
strong, and whether it is a tension.

Proposition 3.5. Let φ ∈ L(G,Γ).
(i) If W is a semifacial walk in G, then φ ∈ L+(G,Γ) if and only if W is

conservative for φ.
(ii) If Y is a set of closed walks that generates H1(G,Z), then φ ∈ T (G,Γ) if

and only if every member of Y is conservative for φ.
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Proof. Part (i) follows immediately from equation (3.2) and the comment after (3.3)
in Section 3. Part (ii) follows from Proposition 3.1(a). �

We define now a class of ‘elementary’ strong local tensions, which will be used
to prove the main theorem. Let ω = R0, e1, R1, . . . , ek, R0 be a simple closed dual
walk in an embedded graph G. Suppose ω is two-sided, and thus corresponds
to a cylinder in |G|. Then ω corresponds to a circuit ω∗ in G∗. Using a fixed
orientation of the cylinder (which is an orientable bordered surface), we orient the
edges of ω∗ consistently with ω according to the left-to-right rule. We define a map
Ωω ∈ C1(G,Z) according to the rule

Ωω(e) =

{
Iω∗(e∗) if e ∈ E(ω)
0 otherwise,

where Iω∗ is the {0,±1}-valued indicator function of ω∗. By definition we have, for
any face R ∈ F (G), that IR ·Ωω = 0. Therefore Ωω ∈ L(G,Z) by Proposition 3.1(b).
It is possible to reorient the faces of ω so that τ(e) = 0 for every e ∈ E(ω). For
this face-reorientation we have τ · Ωω = 0. In view of (3.3), we have shown the
following.

Proposition 3.6. If ω is a simple closed two-sided dual walk in an embedded
graph G, then gΩω ∈ L+(G,Γ) for every g ∈ Γ.

4. From strong local tensions to tensions

The goals of this section are to prove the following general result, and then to
prove its main application, Theorem 1.1.

Let Γ be an additive abelian group. If Q ⊆ Γ, and k is a positive integer, then we

let kQ =
∑k

i=1 Q. We say that Q is a k-part of Γ if 0 ∈ Q, Q = −Q, and kQ = Γ.

Theorem 4.1. Let X be a surface and let k be a positive integer. Then there exists
an integer M such that for every X-embedded graph G with edgewidth(G) ≥ M ,
every abelian group Γ, every k-part Q of Γ, and every φ ∈ L+(G,Γ), there is a
φ′ ∈ T (G,Γ) with φ(e) − φ′(e) ∈ 2Q for every e ∈ E(G).

We shall require the notion of a surface minor. Let G be an embedded graph,
let e ∈ E(G) have ends u, v, and let R1, R2 be the faces incident with e. If e
is not a loop, then we let G/e denote the embedded graph obtained from G by
identifying u and v to a single new vertex, say w, removing e from E(G), and
replacing occurrences of v, e, u or u, e, v in the boundary walks of R1 and R2 by w.
We say that G/e is obtained from G by contracting the edge e. If e occurs in the
boundary of distinct faces R1 and R2, and σ(e) = 1, then we let G \ e denote the
embedded graph obtained from G by removing e from E(G), and identifying R1 and
R2 in a natural way to a single new face whose boundary orientation is inherited
from R1 and R2. We say that G \ e is obtained from G by deleting the edge e.
Any embedded graph H obtained from G by a sequence of switching orientations
of edges and faces, deleting and contracting edges is called a surface minor of G.
A surface minor of G which can be obtained by only deleting edges and switching
orientations of edges and faces is called a surface subgraph of G. When making a
surface subgraph, we allow one other special operation: one may contract an edge
provided that one of its ends is a vertex of degree one.

The reader may observe that our definition of a surface minor seems more re-
strictive than the usual one. For example, if e is an edge incident with two distinct
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faces, then we cannot delete e if σ(e) = −1. This type of restriction is inessential
as we may simply switch the orientation of a face incident with e first and then
delete e. The second difference is that we are neither permitted to delete an edge
which is incident with only one face, nor dually, to contract a loop. However, these
are standard assumptions to avoid degeneracies.

We define the face-width of G, written facewidth(G), to be the minimum cardi-
nality of the point set G ∩ C among all noncontractible curves C in |G|. It is easy
to see that facewidth(G) ≤ edgewidth(G). We shall first prove that Theorem 4.1
holds for graphs of high face-width. Later, we describe a reduction that extends
the result to graphs of high edge-width.

Theorem 4.2 (Robertson and Seymour [27]). For every X-embedded graph H,
there exists an integer M such that every X-embedded graph G with facewidth(G) ≥
M contains a surface minor isomorphic to H.

If G,H are embedded graphs and H can be obtained from G by a sequence of
contracting edges incident with vertices of degree 2, then G is a subdivision of H .

For h = 1, 2, . . . , let Th be the Sh-embedded graph which is represented in
Figure 2(a) for the case h = 3. The surface is obtained by taking the regular
4h-gon (called the fundamental polygon) with sides a1, b1, a

−
1 , b

−
1 , . . . , ah, bh, a

−
h , b

−
h

and identifying each ai with a−i and bi with b−i , i = 1, . . . , h, using the orientations
shown in Figure 2. Similarly, we let Uh be the Nh-embedded graph as shown in
Figure 2(b) for the case h = 6. For an even value h = 2g + 2, the fundamental
polygon has sides a1, b1, a

−
1 , b

−
1 , . . . , ag, bg, a

−
g , b

−
g , c, d, c, d

−, while for h = 2g+1, the

sides labeled d and d− are missing: a1, . . . , b
−
g , c, c. Figure 2 also shows a collection

of circuits in Th, denoted by A1, B1, . . . , Ah, Bh, and a collection of circuits in Uh,
denoted by A1, B1, . . . , Ag, Bg and C (and D for U2g+2). Since the graphs Th

and Uh have maximum degree three, any graph which has a Th or Uh as a surface
minor has a surface subgraph which is a subdivision of Th or Uh, respectively.

a1 a1

a2 a2

a2 a2

b2 b2

b2 b2

a3 c

a3 c

b3 d

b3 d

b1 b1

b1 b1

a1 a1

T3 U6

A1 A1

B1 B1

A2 A2

B2 B2

A3 C

B3 D

(a) (b)

Figure 2. Embedded graphs T3 and U6



COLORING-FLOW DUALITY OF EMBEDDED GRAPHS 13

If Q is a circuit of G/e, then exactly one of E(Q) or E(Q) ∪ {e} is the edge set
of a circuit Q′ in G. We say that this circuit Q′ corresponds to Q. More generally,
if H is a surface minor of G and Q ⊆ H is a circuit, then there is a unique circuit
Q′ ⊆ G which corresponds to Q. If Y is a collection of circuits of H , then we say
that Y ′ = {Q′ ⊆ G | Q′ corresponds to some Q ∈ Y } corresponds to Y . We shall
regard all these circuits to be simple closed walks so that the terms ‘semifacial’,
‘conservative’ and ‘generates’ defined in Section 3 apply.

Lemma 4.3. Let G be a graph embedded in the surface Sh (h ≥ 1) or Nr, where
r ∈ {2h + 1, 2h + 2} and h ≥ 0. Suppose that G has a surface subgraph which
is a subdivision of Th or Ur, respectively. Let A′

1, B
′
1, . . . , A

′
h, B

′
h (and C ′ and D′

if applicable) be the circuits of G which correspond to A1, B1, . . . , Ah, Bh (and C
and D if applicable). Then we have:

(i) A′
1, B

′
1, . . . , A

′
h, B

′
h (and C ′ and D′ if applicable) generate H1(G,Z).

(ii) If |G| = N2h+1, then C ′ is semifacial; if |G| = N2h+2, then D′ is semifacial.

Proof. Part (i) follows by construction. Indeed these circuits minimally generate
the free homotopy group π1(|G|). For part (ii), suppose X = N2h+2. We observe
from Figure 2(b) that we may reorient the faces of G so that an edge e ∈ E(G) has
τ(e) = ±1 if and only if e ∈ E(D′), so ID′ belongs to the homology class 〈τ〉. In
case X = N2h+1, the argument is similar, but with D′ replaced by C ′. �

Next we define two families of embedded graphs, T k
h and Uk

h (h ≥ 1, k ≥ 1)
as follows. We start with the embedded graph Th or Uh. Let g = h for Th and
g = b(h−1)/2c for Uh. Then we add, for i = 1, . . . , g, two families of k+1 pairwise
disjoint circuits of length k + 3 each (as shown in Figure 3) such that each circuit
from the first family and each circuit from the second family intersect once. In the
case of Uh, where h = 2g+ 2 is even, we add one additional family of k+ 1 disjoint
circuits, each of length 2. See Figure 3.

a
1

a
2

a
2

b
2

b
2

c

c

d

d

b
1

b
1

a
1

a
1

1

a
2

1

b
2

1

b
1

1

b
1

3

g1

Figure 3. Embedded graph U3
6 and some dual walks
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Lemma 4.4. Let k ≥ 1 be an integer. Let G be a graph embedded in the surface
X = Sh with h ≥ 1, or in X = Nr, where r ∈ {2h + 1, 2h + 2} and h ≥ 0. Sup-
pose that G contains T k

h (or Uk
r , respectively) as a surface minor. Let A′

1, B
′
1, . . . ,

A′
h, B

′
h (and C ′ if X = N2h+1, and C ′, D′ if X = N2h+2) be the circuits of G

which correspond to A1, B1, . . . , Ah, Bh (and C and D if applicable). Let P =⋃h
i=1(E(A′

i) ∪ E(B′
i)) ∪ E(C ′) ∪ E(D′) (where E(C ′) and E(D′) are added only

when applicable). Then there exist in G simple closed dual walks αj
i , β

j
i (and γj if

X = N2h+2) for 1 ≤ i ≤ h and 1 ≤ j ≤ k with the following properties:

(i) Every face of G occurs in at most two of the dual walks αj
i , β

j
i , γ

j.

(ii) The dual walks αj
i , β

j
i , γ

j are all two-sided.

(iii) αj
i contains exactly one edge of A′

i and no edges in P \E(A′
i).

(iv) βj
i contains exactly one edge of B′

i and no edges in P \E(B′
i).

(v) If X = N2h+2, then γj contains exactly one edge of C ′ and no edges in
P \E(C ′).

Proof. We proceed by induction on |E(G)|. The base case is when G = T k
h or

G = Uk
r , and here the walks are as indicated in Figure 3. For the inductive step,

contract or delete an edge e of G so that the resulting minor G′ still has T k
h or Uk

r

as a surface minor. By the induction hypothesis, G′ has dual walks with the stated
properties. If an edge was contracted, then the dual walks of G′ are dual walks
of G with the required properties. If an edge was deleted to form a face R, then
we adjust each dual walk containing R in the obvious manner. It is easy to verify
that the resulting dual walks still satisfy (i)–(v). �

We are ready to prove the following lemma, which is identical to Theorem 4.1
except that edge-width is replaced here by face-width.

Lemma 4.5. Let X be a surface and let k be a positive integer. Then there exists
an integer M , so that for every X-embedded graph G with facewidth(G) ≥ M ,
every abelian group Γ, every k-part Q of Γ, and every φ ∈ L+(G,Γ), there is a
φ′ ∈ T (G,Γ) with φ(e) − φ′(e) ∈ 2Q for every e ∈ E(G).

Proof. We apply Theorem 4.2 to find an integerM so that every X-embedded graph
with face-width ≥M contains T k

h as a minor if X = Sh, and so that it contains Uk
r as

a minor if X = Nr, where r = 2h+1 or r = 2h+2. Let G be an X-embedded graph
with facewidth(G) ≥ M , and let φ ∈ L+(G,Γ). Let A′

1, B
′
1, . . . , A

′
h, B

′
h, (and C ′

if X = N2h+1, and C ′, D′ if X = N2h+2) be the circuits of G which correspond to
A1, B1, . . . , Ah, Bh (and C and D if applicable) of T k

h or Uk
r . Choose dual walks

αj
i , β

j
i , (and γj if X = N2h+2) in accordance with Lemma 4.4. Let xj

i , y
j
i , z

j be
variables in Γ, for 1 ≤ i ≤ h and 1 ≤ j ≤ k. Consider the function

φ′ = φ+
∑

i,j

xj
i Ωαj

i

+
∑

i,j

yj
i Ωβj

i

+
∑

j

zjΩγj ,

disregarding inapplicable terms. It follows from Proposition 3.6 that φ′ ∈ L+(G,Γ).
Furthermore, by properties (ii)–(v) of Lemma 4.4 and the assumption that Q is a

k-part, we may choose xj
i , y

j
i , (and zj if X = N2h+2) in Q so that A′

1, B
′
1, . . . , A

′
h, B

′
h

(and C ′ if X = N2h+2) are all conservative for φ′. By Lemma 4.3(ii) the circuit C ′

(if X = N2h+1), or D′ (if X = N2h+2) is semifacial. Since φ′ ∈ L+(G,Γ), we have
by Proposition 3.5(i) that C ′ and D′ are conservative for φ′ in these two cases.
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Applying Lemma 4.3(i) and Proposition 3.5(ii) we have that φ′ is a tension as
claimed. Finally, it follows from Lemma 4.4(i) (and the fact that the dual walks
are simple) that φ′(e) − φ(e) ∈ 2Q for every e ∈ E(G). �

The value of M in the above proof is provided by Theorem 4.2. Although the
paper [27] does not provide explicit bounds on M , reasonably small bounds can be
obtained using results of [3] and [14], see [22] for more details.

Let R be a face of the embedded graph G whose boundary walk C0 has length
k ≥ 4. Next we define a graph H embedded in |G| such that H contains G as an
embedded subgraph and such that the only face of G which is not a face of H is
R. We start by drawing k nested circuits C1, C2, . . . , Ck, each of length k, inside
the face R. For 1 ≤ i ≤ k, we add a perfect matching between the vertices of Ci−1

and Ci. The construction is illustrated in Figure 4. For 1 ≤ i ≤ k, we orient each
new matching edge from Ci−1 to Ci, and we orient each edge of Ci to coincide with
the corresponding edge on C0. We say that this new embedded graph is obtained
from G by adding a chimney to R. Let us observe that C0 may not be a circuit,
but all new faces are bounded by circuits of length either 4 or k. The following
proposition is easy to verify.

C
0

C
0

C
5

Figure 4. Adding a chimney in a face of length 5

Proposition 4.6. Let G′ be obtained from an embedded graph G by adding a chim-
ney to every face of length at least 4. Then the face-width of G′ is equal to the
edge-width of G.

Proof of Theorem 4.1: Let X, k, G,Γ, Q, and φ ∈ L+(G,Γ) be as stated in the
theorem, and let M be the constant of Lemma 4.5. We form the embedded graphG′

by adding a chimney to every face of G of length ≥ 4. Proposition 4.6 shows that
Lemma 4.5 can be applied to G′. Define ψ ∈ C1(G

′,Γ) so that ψ(e) = φ(e) for
e ∈ E(G), and for every chimney, each edge of C1, . . . , Ck has the same value as the
corresponding edge on C0, while edges joining Ci−1 and Ci all have the value 0 ∈ Γ.
Then it is easy to see that ψ ∈ L+(G′,Γ). Therefore, we may choose ψ′ ∈ T (G′,Γ)
so that ψ′(e) − ψ(e) ∈ 2Q for every e ∈ E(G′). It now follows that φ′ = ψ′|E(G) is
a tension of G with the required properties. 2

Before proving Theorem 1.1, we must express χc(G) in terms of a group which
is suited to the application of Theorem 4.1. We consider the circle group O = R/Z.
We identify O with the half open interval [0, 1) in the usual way. For x ∈ O, we
let ‖x‖ = min{x, 1 − x}. The term ‘circular chromatic number’ is etymologically
based on the following formula which appears, for example, in [37].
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Proposition 4.7. For any graph G we have

1

χc(G)
= max

φ∈T (G,O)
min

e∈E(G)
‖φ(e)‖.

Proof of Theorem 1.1: Let k = 5+
⌈

25
ε

⌉
, and apply Theorem 4.1 to obtain a pos-

itive integer M0 based on the surface X and the integer k. Let M = max(M0,M1)
where M1 is the integer supplied by Theorem 2.2(a). Let G be a loopless graph
embedded in X with edge-width at least M . Define α = χloc(G). By the choice
of M1, we have α ≤ χc(G) ≤ 5.

Let ψ ∈ C1(G,R) be a local α-tension of G. Define φ ∈ C1(G,O) by the rule
φ(e) = ψ(e)/α, so that φ(e) ∈

[
1
α ,

α−1
α

]
, for e ∈ E(G). Since Inv(R) = {0},

Proposition 3.4(b) implies that ψ is a strong local R-tension. Consequently φ is
a strong local O-tension. The interval

[
− 1

2k ,
1
2k

]
is a k-part of O, so by choice

of M0, there exists an O-tension φ′ such that φ(e)− φ′(e) ∈
[
− 1

k ,
1
k

]
. Thus φ′(e) ∈[

1
α − 1

k ,
α−1

α + 1
k

]
. By Proposition 4.7 we have χc(G) ≤

(
1
α − 1

k

)−1
. Therefore

χc(G) − χloc(G) ≤
αk

k − α
− α =

α2

k − α
≤

25

k − 5
≤ ε

as claimed. 2

5. Two families of embedded graphs

In this section we study two families of embedded graphs G for which χloc(G)
exhibits ‘bimodal’ behaviour: even-faced graphs, and triangulations. We charac-
terize the bipartition of each family into odd and even types, and give a proof of
Theorem 1.2. When G has large edge-width, we may apply our main theorem to
obtain the bimodal behaviour of χc(G) described in Corollary 1.3.

In both applications, we need a way to deduce lower bounds on χloc(G). We
use a method based on edge-reorientations. For any closed walk W in a directed
graph H , we define the imbalance of W in H to be

imbalH(W ) = 1 + max

{
w+(W )

w−(W )
,
w−(W )

w+(W )

}

where

w+(W ) =
∑

{〈e,W 〉 | 〈e,W 〉 > 0},

w−(W ) =
∑

{−〈e,W 〉 | 〈e,W 〉 < 0}.

We allow the value imbalH(W ) = ∞ if one of w+(W ), w−(W ) equals zero. Sup-
pose W = v0e1v1 . . . ekvk has s indices i for which ei is a forward edge in W , and
let t = k − s. Then for some c ≥ 0 we have s = w+(W ) + c and t = w−(W ) + c.
Therefore, one can approximate

imbalH(W ) ≥
s+ t

min(s, t)
(5.1)

with equality holding if and only if no edge in H is traversed at least once in each
direction.

It was first observed by Minty [21] that χ(G) can be expressed in terms of circuit
imbalance. The following analogous result for χc(G) appears in [12].
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Theorem 5.1. For any graph G we have

χc(G) = min
H

max
W

imbalH(W ), (5.2)

where H ranges over all edge-reorientations of G, and W ranges over the circuits
in H.

An analogous ‘Minty-like’ result exists for χloc(G). It is obtained by restricting
the set over which W ranges in equation (5.2). Since we only require lower bounds
on χloc in this paper, we state and prove only the ‘easy direction’ of this analogue.
A closed walk W in an embedded graph G is homologically trivial if IW ∈ K(G,Z).

Proposition 5.2. Let G be an embedded graph and let α ∈ R. If for every edge-
reorientation H of G there exists a homologically trivial closed walk W such that
imbalH(W ) ≥ α, then χloc(G) ≥ α.

Proof. By the definition of χloc(G), there exists an edge-reorientation H of G, and
φ ∈ L(H,R) such that 1 ≤ φ(e) ≤ χloc(G) − 1 for e ∈ E(G). Choose W in H as in
the statement. By Proposition 3.1(a) we have

∑

e∈W

〈e,W 〉φ(e) = 0.

By separating out those terms in the summation for which 〈e,W 〉 < 0, and using
1 ≤ φ(e) ≤ χloc(G) − 1, it follows easily that

imbalH(W ) ≤ 1 + max
e∈E(W )

{φ(e)} ≤ χloc(G).

�

The converse of Proposition 5.2 appears in [13]. We do not present it here since
we do not need it and its proof is more involved.

Let G be an X-embedded even-faced graph. We say that G is of even (odd) type
if the number of edges e with σ(e) = −1 is even (odd). Thus the type of G has the
same parity as the integers

∑
e∈E(G) τ(e) and τ · τ . Since reorienting a face changes

σ(e) for an even number of edges, the type of G is invariant under reorienting faces
and edges of G. This classification of G appears in several papers [1, 23, 26, 36], but
under several different, more geometric characterizations. For example Archdeacon
et al. [1] describe the type of G as being the ‘parity of the length of a circuit
in G with the property that cutting the surface along it results in an orientable
surface.’ Alternatively, Mohar and Seymour [23] show that the type of G can also
be expressed as the parity of the number of ‘odd crosscaps’ in X = Ng, where a
crosscap in X = Ng is even or odd according to the length of a circuit separating
that crosscap from all the others. We do not use either of these definitions here
since the circuits they refer to may not exist if G has small edge-width.

Lemma 5.3. Let G be an even-faced embedded graph with maximum face length 2r.
The following are equivalent:

(a) G is of even type.
(b) The edges of G can be reoriented so that each boundary walk has exactly

half of its edges oriented in each direction.
(c) Some (and thus every) Euler tour of G∗ is a two-sided closed walk.
(d) χloc(G) = 2.
(e) χloc(G) < 2 + 2/(r − 1).
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Proof. We prove (b) ⇒ (a) ⇒ (c) ⇒ (b) ⇒ (d) ⇒ (e) ⇒ (b). Consider the equation
∑

R∈F (G)

∑

e∈E(G)

〈e,R〉 = 2
∑

e∈E(G)

τ(e) (5.3)

By the definitions, G is of even type if and only if the right hand side of (5.3) is
divisible by 4. We recall that reversing some edges of G does not change its type.
If (b) holds then the left hand side of (5.3) vanishes for some edge-reorientation
of G, whence G has even type. Thus (b) implies (a). It is immediate from the
definitions and the fact G∗ is Eulerian that (a) implies (c). Suppose (c) holds. Let
R0, e1, R1, e2, . . . , ek, Rk be the dual walk of G corresponding to an Euler tour in
G∗. For i = 2, 3, . . . , k we reorient ei so that ei and ei−1 are oppositely oriented
relative to Ri. Then each face except possibly R0 = Rk has equal numbers of
edges oriented in each direction. Thus all the terms in the left hand side of (5.3)
vanish except, possibly,

∑
e∈E(G)〈e,R0〉. By construction, this sum has magnitude

at most 2, yet it is divisible by 4, so it equals zero. Thus (c) implies (b).
If (b) holds, then the function φ ≡ 1 is a local 2-tension for this edge-reorientation

of G, so (b) implies (d). Trivially (d) implies (e). Finally, suppose that (b) is false.
Then, in view of (5.1), for every edge-reorientation of G there exists a face boundary
walk W of length 2k with imbalance at least 2k/(k − 1). Since k ≤ r, this implies
imbalG(W ) ≥ 2+2/(r−1). Applying Lemma 5.2, we have χloc(G) ≥ 2+2/(r−1).
Thus (e) implies (b). �

Remark 5.4.

(1) If embeddings of graphs are represented combinatorially by rotation systems
and signatures [24], then statement (c) is equivalent to the dual G∗ having
an odd number of edges with negative signature.

(2) SupposeG is even-faced of odd type. Then every surface subgraphG′ ofG is
also even-faced of odd type. (This follows from the rule that a loop incident
with only one face may not be deleted in a surface minor.) If additionally, G′

has maximum face length 2r′ < 2r. Then the bound χc(G) ≥ 2 + 2/(r− 1)
given by part (e) can be improved to χc(G) ≥ χc(G

′) ≥ 2 + 2/(r′ − 1). It
follows that Lemma 5.3 holds true with the weaker hypothesis that some
surface subgraph of G has maximum face length 2r.

(3) More can be said about χc(G) and χloc(G) in case |G| is the projective
plane. In particular, the strengthened version of the previous remark gives
an exact formula for χc(G) in this case (cf. Example 6.8).

Next we shall classify locally 3-colorable triangulations. Let G be a triangulation
of a surface X. We say that G is of even type if for every closed dual walk ω =
R0, e1, R1, . . . , ek, R0, the number of indices i (1 ≤ i ≤ k) with σ(ei) = 1 is even. A
triangulation is of odd type if it is not of even type. Reversing a face of G changes
σ(ei) for an even number of indices i, so the type of G does not depend on face or
edge orientations.

Lemma 5.5. Let G be a triangulation of some surface, such that G has no surface-
separating loops. The following are equivalent:

(a) G is of even type.
(b) The faces of G can be reoriented so that σ(e) = −1 for every e ∈ E(G).
(c) Every two-sided closed walk in G∗ has even length and every one-sided

closed walk in G∗ has odd length.
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(d) χloc(G) = 3.
(e) χloc(G) < 4.

Proof. We prove that (b) ⇒ (c) ⇒ (a) ⇒ (b) ⇒ (d) ⇒ (e) ⇒ (b). We observe
that property (c) is invariant under reorienting faces of G. It follows immediately
that (b) implies (c). Suppose now that (c) holds. Then for any closed dual walk
R0, e1, R1, . . . , ek, R0, the number of indices i for which σ(ei) = −1 has the same
parity as k. Thus the number of indices i for which σ(ei) = 1 equals k − |{i |
σ(ei) = −1}|, which is even. Thus (c) implies (a). Suppose (a) holds. Choose a face
R ∈ F (G), and let X be the set of faces Q ∈ F (G) such that there exists a dual walk
R0, e1, R1, . . . , ek, Rk with R0 = R, Rk = Q, and with |{i | 1 ≤ i ≤ k, σ(ei) = 1}|
odd. Let Y = F (G) \X . Since no closed dual walk has an odd number of edges e
with σ(e) = 1, it follows that an edge e ∈ E(G) has σ(e) = 1 if and only if e is
incident with one face in X and one face in Y . Thus, the orientation obtained by
reversing the faces in X satisfies (b).

Suppose (b) holds. If G∗ is the dual graph, then G∗ is cubic. Since G has no
surface separating loops, G∗ is 2-edge-connected. It follows from Petersen’s theorem
that there exists a perfect matching M ⊆ E(G∗). Let M ′ be the corresponding set
of edges in G. Condition (b) implies τ(e) = ±1 for e ∈ E(G). Therefore the map
φ : E(G) → R given by the rule

φ(e) =

{
2 τ(e) if e ∈M ′

−τ(e) otherwise

is a local 3-tension. Thus (b) implies (d). Trivially we have (d) implies (e). Finally,
suppose that (e) is true. By Lemma 5.2, there is an edge-reorientation G′ of G
such that every homologically trivial closed walk in G′ has imbalance less than 4.
In particular, each boundary walk has at least one edge in each direction. Let G′′

be obtained from G by reorienting faces in such a way that each boundary walk
has exactly two forward edges with respect to G′. We claim that G′′ satisfies (b).
If σ(e) = 1 for some e ∈ E(G′′), then e must bound two distinct faces. One easily
checks that the boundary of the union of these faces is a homologically trivial walk of
length 4 whose imbalance in G′ equals 4, a contradiction. Thus (e) implies (b). �

Remark 5.6. If we wish to allow surface-separating loops in Lemma 5.5, then the
theorem is false unless we append the phrase, “and G∗ has a perfect matching” to
each of the conditions (a), (b) and (c). This perfect matching is used in proving
(b) ⇒ (d). Conversely, in the proof of (e) ⇒ (b), a perfect matching of G∗ can be
recovered by selecting from each face R the unique edge in G′ which is backward
with respect to the orientation of R in G′′. The smallest triangulation with loops
which satisfies (b) but not (d) is the graph G0 having one vertex and six loops
embedded on N3 in such a way that G∗

0 is the 3-regular graph obtained from K1,3

by adding three loops. With this remark in mind, it may be technically more
accurate to add the perfect matching condition in the definition of ‘even type’.

We make two observations concerning the characterizations of Lemmas 5.3 and 5.5.
First, if X is orientable, then every X-embedded even-faced graph is of even type.
This is false for triangulations; a single odd-degree vertex already implies the type
is odd. Furthermore, Eulerian triangulations of both types exist on any surface
different from the sphere. A triangulation of an orientable surface is of even type if
and only if its dual graph G∗ is bipartite. It is easy to check if a given even-faced
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graph (respectively, a triangulation) is of even or odd type. To determine the type
of an even-faced embedded graph, one needs only perform a single parity check
involving all of its edges, by Lemma 5.3(c). For a triangulation, one has to consider
the dual graph G∗. First of all, we subdivide every edge e∗ of G∗ whose signature
is negative (i.e., σ(e) = −1). If H is the resulting graph, then G is of even type if
and only if H is bipartite. This follows easily from Lemma 5.5(c).

Proof of Theorem 1.2: This follows from parts (a), (d) and (e) of Lemma 5.3.
and from parts (a), (d) and (e) of Lemma 5.5. 2

6. Examples

In this section we present several examples and special cases which are relevant
to this paper. Most of these examples are not new. However their study has
hitherto been confined to the invariants χ(G) and dφc(G)e. Example 6.1 is classic.
Variations and special cases of Exaples 6.2 and 6.5 appear in [1, 17, 18, 23, 36].
Example 6.7 is due to Fisk [7], and Theorem 6.9 is due to Goddyn [11]. Example 6.4
and Theorem 6.6 are new to our knowledge.

Example 6.1. There is an embedding K of K6 with edge-width 3 on the projective
plane. The dual K∗ is Petersen’s graph. By Corollary 3.3 and the well known
fact that χc(Kn) = n, we have χloc(K) = χc(K) = 6, whereas φc(K

∗) = 5. This
example shows that no improvement is possible in conjectures of Bouchet and DeVos
regarding χloc, as discussed after Conjecture 2.1.

Example 6.2. For any nonorientable surface X, there exist 3-connected quadrangu-
lations Q and hexangulations H of odd type and arbitrarily large edge-width which
satisfy χc(Q) ≥ χloc(Q) ≥ 4, χc(H) ≥ χloc(H) ≥ 3, and φc(Q

∗) = φc(H
∗) = 2.

To construct such examples, we proceed as follows. By patching together square
or hexagonal grids appropriately, and then subdividing edges if desired, it is not
difficult to construct even-faced embedded graphs of odd type with additional prop-
erties. We omit a proof of the following.

Proposition 6.3. For every integer r ≥ 1 and every nonorientable surface X, there
exists an even-faced X-embedded graph Gr of odd type and arbitrarily large edge-
width, such that every shortest circuit bounds a face of length 2r. Furthermore, Gr

is 3-connected if r ∈ {2, 3}.

By Lemma 5.3(e), we have χc(Gr) ≥ χloc(Gr) ≥ 2 + 2/(r − 1). In fact we have
that χc(Gr) = 2+2/(r−1) provided the edge-width is large enough, but we do not
prove this here. If, additionally, we have 2r ∈ {4, 6}, then the upper bounds in parts
(b) and (d) of Theorem 2.2 imply that χ(Gr) = χc(Gr) = χloc(Gr) = 2+2/(r− 1).
Therefore one can not improve the bounds in parts (b), (c) and (d) of that Theorem.

Example 6.4. This example shows that Theorem 4.1 is false without the assump-
tion that φ ∈ L+(G,Γ). Let G be an even-faced embedded graph of odd type and
maximum face length 2r. The constant function φ(e) ≡ 1/2 is clearly a local O-
tension where O = R/Z, but φ is not strong since τ · φ = 1/2. By Theorem 1.2(a)
we have χc(G) ≥ 2r/(r − 1). Thus by Proposition 4.7 every O-tension φ′ satisfies

min
e∈E(G)

‖φ′(e)‖ ≤
1

χc(G)
≤

1

2
−

1

2r
.
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Thus the conclusion of Theorem 4.1 fails when Q is the k-part
[
−1
2k ,

1
2k

]
of O, for

any k > r.

Example 6.5. Hutchinson et al. [18] proved that the graph obtained from a non-
bipartite quadrangulation of the projective plane by adding a new vertex in every
face adjacent to all four vertices on the boundary has chromatic number at least 5.
This property extends to the circular chromatic number, and examples exist on all
nonorientable surfaces.

Theorem 6.6. Let G be an odd type quadrangulation of some surface. Let H be
obtained from G by adding a new vertex in each face adjacent to all four vertices
on the boundary. Then χ(H) ≥ χc(H) ≥ χloc(H) ≥ 5.

Proof. Let H ′ be an arbitrary edge-reorientation of H , and let G′ denote the sub-
graph of H ′ corresponding to G. By Lemma 5.3(b) there is a face R of G′ whose
boundary walk W satisfies imbalG′(W ) ≥ 4. Consider now the subgraph of H ′

consisting of W together with the vertex added in R and all of its incident edges.
It is easy to verify that H ′ contains another walk W ′ with imbalH′(W ′) ≥ 5. The
walk W ′ is homologically trivial. Therefore χloc(H) ≥ 5 by Proposition 5.2. �

If, additionally,H has high edge-width, then Theorem 2.2(a) implies that χ(H) =
χc(H) = χloc(H) = 5. Therefore, this upper bound is best possible in a strong
sense.

Example 6.7. The following examples show that for every surface X different from
the sphere there exist 5-connected triangulations F of odd type and arbitrarily large
edge-width which satisfy φc(F

∗) = 3 and χc(F ) > 4. It seems likely that when X

is orientable we have 4 = χloc(F ) < χc(F ) < 4 + ε where ε approaches zero as
edge-width increases. Fisk [7] showed that any triangulation G with exactly two
odd-degree vertices satisfies χc(G) > 4 provided the two vertices are adjacent. Such
Fisk triangulations exist of arbitrary edge-width on every surface except the sphere
(cf., e.g., [33]). We suspect that Fisk triangulations G of orientable surfaces usu-
ally satisfy χloc(G) = 4. This is a special case of Grünbaum’s Conjecture 2.1(b).
By Theorem 1.1 this would imply that χc(G) is vanishingly close to 4 for high
edge-width Fisk triangulations of orientable surfaces. In summary, Fisk triangula-
tions have the advantage over Example 6.5 of existing on orientable surfaces (other
than the sphere), but the disadvantage of having a smaller local circular chromatic
number.

Example 6.8. There are several improvements to results in this paper in the case
when G is embedded in the projective plane. First, such embedded graphs satisfy
χc(G) = χloc(G) by Corollary 3.3. This allows one to set ε = 0 in the statements
of Theorems 1.1, 1.3, and 4.1.

Second, a circuit in G is noncontractible in N1 if and only if it is semifacial.
Consequently, if G is a triangulation of N1, then G is of even type if and only if
its dual G∗ is even-faced of odd type. This statement is false on any other surface.
Additionally, an even-faced N1-embedded graph has even type if and only if it is
bipartite.

Third, the homotopy group of N1 is Z/2Z. This makes it possible to classify the
circuits of G and apply the Minty formula, Theorem 5.1. In this way Goddyn [11]
has derived an exact formula for even-faced graphs on N1.
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Theorem 6.9. Let G be a loopless even-faced N1-embedded graph. Then either
χc(G) = 2 or χc(G) = 2 + 2/(r − 1) where r is the smallest integer such that some
surface subgraph has maximum face length 2r.

For example, a projective planar even-faced graph G has χc(G) = 4 if and only
if it is loopless, nonbipartite and contains a quadrangulation of N1 as a surface
subgraph. Similarly, χc(G) = 3 if and only if G is loopless, nonbipartite, contains
no quadrangulation, but contains a surface subgraph with all faces of length 4
or 6. Otherwise, χc(G) ≤ 8/3. Any hexangulation H of N1 satisfies χc(H) ∈
{2, 3, 4,∞}, and every quadrangulation Q of N1 satisfies χc(Q) ∈ {2, 4,∞}. The
latter result strengthens that of Youngs [36], which considers only χ(Q). Gimbel and
Thomassen [10] have proved a related result that holds for embedded graphs which
are not even-faced: a loopless N1-embedded graph with no contractible triangles
satisfies χc(G) ≤ 3 if and only if it contains no nonbipartite quadrangulation as a
surface subgraph.

One application regards the well-known Mycielski transformation [25], which
constructs, from any simple graph G, a new graph µ(G) having the same clique
number as G, but χ(µ(G)) = χ(G) + 1. For any odd circuit C2k+1, the graph
µ(C2k+1) embeds on N1 as a quadrangulation of odd type. Our results imply
that χc(µ(C2k+1)) = 4 even though χc(C2k+1) = 2 + 1/k. This result already
appears in [4]. Let us remark that a similar statement also holds for the ‘generalized
Mycielski construction’, a variation which which has recently gained attention with
regard to graph homomorphisms [30].

7. Bordered surfaces

It is possible to define embeddings of graphs in bordered surfaces. We shall
refrain from giving a formal definition here. For our purpose, a bordered surface
embedding can be obtained from an embedding of a graph G in a closed surface by
removing (the interiors of) some of the faces. The boundaries of the removed faces
are then called the boundary components of the resulting bordered surface. We do
not require that the boundary components be disjoint.

We define the edge-width of a graph embedded in a bordered surface as the
length of a shortest noncontractible circuit in G. Observe that the circuits on the
boundary are noncontractible except when the surface is the disk (sphere with one
boundary component).

Let G be a graph embedded in a bordered surface X with boundary components

Q1, . . . , Qr. Let G̃ be the graph embedded in a (closed) surface X̃ which is obtained
as follows. First, we add a chimney to every boundary component Qi (1 ≤ i ≤ r)
and denote by Q′

i the new boundary component obtained this way. Now, we take
two copies of the resulting graph and identify each boundary component Q′

i in the
first copy with the corresponding boundary component in the second copy. Then

it is easy to see that the edge-width of G̃ in X̃ is equal to the edge-width of G in X.
Moreover, every (local) tension in G determines a (local) tension in G̃, and vice
versa. We leave the details to the reader.

The above remarks show that the results of this paper can also be formulated
for graphs on bordered surfaces. As an example, we state analogues of Theorem 1.1
and Corollary 1.3(a).
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Theorem 7.1. Let X be a bordered surface and let ε > 0. There exists an integer M
so that every graph G embedded in X with edge-width at least M satisfies

χloc(G) ≤ χc(G) ≤ χloc(G) + ε.

Corollary 7.2. For every fixed bordered surface X and every ε > 0, there exists an
integer M such that for every even-faced X-embedded graph G with maximum face
length 2r and with edge-width at least M ,

χc(G) ∈ [2, 2 + ε] ∪ [2 + 2/(r − 1), 4].

Let us further remark, for example, that Corollary 7.2 can be applied to graphs
in closed surfaces whose faces are of even length except for a bounded number of
faces of large odd length, which one can remove to get an even-faced embedding in
a bordered surface.
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