Solutions 5

8.7.1 (Page 295)

Note that $\frac{1}{r\left(1-r^{2}\right)}=\frac{1}{r}-\frac{1}{2(1+r)}-\frac{1}{2(1-r)}$. Now

$$
\begin{aligned}
\int_{r_{0}}^{r_{1}} \frac{d r}{r\left(1-r^{2}\right)} & =\log \frac{r_{1}}{r_{0}}-\frac{1}{2} \log \frac{1+r_{1}}{1+r_{0}}-\frac{1}{2} \log \frac{1-r_{1}}{1-r_{0}} \\
& =\frac{1}{2} \log \frac{r_{1}^{2}\left(1-r_{0}^{2}\right)}{r_{0}^{2}\left(1+r_{1}^{2}\right)} \\
& =2 \pi
\end{aligned}
$$

and therefore $r_{1}^{2}\left(1-r_{0}^{2}\right)=e^{4 \pi}\left(r_{0}^{2}\left(1+r_{1}^{2}\right)\right)$. Rearrange terms and we get $r_{1}=\left[1-e^{-4 \pi}\left(r_{0}^{-2}-\right.\right.$ $1)]^{-1 / 2}$. Note that $P^{\prime}(r)=\left[1-e^{-4 \pi}\left(r^{-2}-1\right)\right]^{-3 / 2}\left(\frac{e^{-4 \pi}}{r}\right)$ which equal to $e^{-4 \pi}$ for $r^{*}=1$.

8.7.2 (Page 295)

Let y_{0} be an initial condition on S, which can be chosen to be any vertical line on the cylinder. Since $\dot{\theta}=1$, the first return to S occurs after a time of flight 2π, then $y_{1}-P\left(y_{0}\right)$, where y_{1} satisfies $\int_{y_{0}}^{y_{1}} \frac{d y}{a y}=\int_{0}^{2 \pi} d t=2 \pi$. This yields $y_{1}=y_{0} e^{2 a \pi}$. In this case, $P(y)=y e^{2 a \pi}$. It has a fixed point at $y^{*}=0$. which corresponds to a periodic orbit in the dynamical system. This fixed point is stable when $\left|P^{\prime}(0)\right|<1$ or $a<0$. Note that for $a=0$ the dynamics is trivial.

9.2.1 (Page 342)

a) Recall that the fixed points C^{+}and C^{-}are

$$
\left(x^{*}, y^{*}, z^{*}\right)=(\pm \sqrt{b(r-1)}, \pm \sqrt{b(r-1)}, r-1)
$$

where $r>1$. In the following we'll write (x, y, z) instead of $\left(x^{*}, y^{*}, z^{*}\right)$.
The Jacobian $A=\left(\begin{array}{ccc}-\sigma & \sigma & 0 \\ r-z & -1 & -x \\ y & x & -b\end{array}\right)$ has characteristic polynomial

$$
\begin{aligned}
\operatorname{det}(\lambda I-A) & =\lambda^{3}+(\sigma+1+b) \lambda^{2}+ \\
& {\left[b(\sigma+1)+x^{2}+\sigma(z+1-r)\right] \lambda+\left[b \sigma(z+1-r)+\sigma\left(x^{2}+x y\right)\right] . }
\end{aligned}
$$

Notice that at C^{+}and C^{-}, we have $x^{2}=x y=b(r-1), z=r-1$, therefore the eigenvalues satisfy

$$
\lambda^{3}+(\sigma+1+b) \lambda^{2}+b(r+\sigma) \lambda+2 \sigma b(r-1)=0
$$

b) Hopf bifurcation occurs when two eigenvalues are pure imaginary (cf. Figure 8.2.4). In this case $\lambda=i \omega$, where ω is real and nonzero. Thus the characteristic equation becomes

$$
-i \omega^{3}-(\sigma+1+b) \omega^{2}+i b(r+\sigma) \omega+2 \sigma b(r-1)=0 .
$$

We then seperate the real part and the imaginary part of the above and obtain that

$$
\omega^{2}=b(r+\sigma)=\frac{2 \sigma b(r-1)}{\sigma+1+b} .
$$

Solving for r, we get

$$
r=r_{H}=\sigma\left(\frac{\sigma+b+3}{\sigma-b-1}\right) .
$$

It is required that r must be positive, so Hopf bifurcation can only occur if r_{H} is positive, i.e. $\sigma>b+1$.
c) If $r=r_{H}$, then the two imaginary roots are

$$
\lambda_{1,2}= \pm i \sqrt{b\left(r_{H}+\sigma\right)} .
$$

It's well known that all 3 roots should add up to $-(\sigma+b+1)$, since the two imaginary ones cancel, we have $\lambda_{3}=-(\sigma+b+1)$.

9.2.2 (Page 343)

Let $C(t)=r x(t)^{2}+\sigma y(t)^{2}+\sigma(z(t)-2 r)^{2}$ be the value of C at time t. Then

$$
\begin{aligned}
C^{\prime}(t) & =2 r x x^{\prime}+2 \sigma y y^{\prime}+2 \sigma(z-2 r) z^{\prime} \\
& =2 r x \sigma(y-x)+2 \sigma y(r x-y-x z)+2 \sigma(z-2 r)(x y-b z) \\
& =-2 \sigma\left(r x^{2}+y^{2}+b z^{2}-2 b r z\right) \\
& =-2 \sigma\left(r x^{2}+y^{2}+b(z-r)^{2}-r^{2} b\right) \\
& =-\frac{2 \sigma}{r^{2} b}\left(\frac{x^{2}}{b r}+\frac{y^{2}}{b r^{2}}+\frac{(z-r)^{2}}{r^{2}}-1\right) .
\end{aligned}
$$

It is then clear that if at time $t,(x, y, z)$ is outside the ellipsoid

$$
K: \quad \frac{x^{2}}{b r}+\frac{y^{2}}{b r^{2}}+\frac{(z-r)^{2}}{r^{2}} \leq 1,
$$

then $C(t)$ will decrease. We can pick C so large that the above ellipsoid is contained in

$$
E: \quad r x^{2}+\sigma y^{2}+\sigma(z-2 r)^{2} \leq C,
$$

which is another ellipsoid, then eventually all trajectories will enter E.
The smallest possible value of C is obtained when the ellipsoids E and K are tangent. The picture is that one shrinks E by decreasing C until the surface of E touches K. This is equivalent to the following problem:

Given condition

$$
\frac{x^{2}}{b r}+\frac{y^{2}}{b r^{2}}+\frac{(z-r)^{2}}{r^{2}}=1
$$

find the maximum of

$$
r x^{2}+\sigma y^{2}+\sigma(z-2 r)^{2}
$$

The maximum is the smallest possible C. This problem can be solved using Langrange multipliers. In practice, given a pair of parameters r and σ, one can use a computer to handle the extreme value problem.

9.2.6 (Page 343)

a) Let $\mathbf{f}=(-\nu x+z y,-\nu y+(z-a) x, 1-x y)$ be the instantaneous velocity, then

$$
\begin{aligned}
\nabla \cdot \mathbf{f} & =\frac{\partial}{\partial x}(-\nu x+z y)+\frac{\partial}{\partial y}(-\nu y+(z-a) x)+\frac{\partial}{\partial z}(1-x y) \\
& =-\nu-\nu+0=-2 \nu<0
\end{aligned}
$$

therefore the system is dissipative (cf. Figure 9.2.1).
b) A fixed points (x, y, z) satisfies that

$$
\begin{align*}
z y & =\nu x \tag{1}\\
(z-a) x & =\nu y \tag{2}\\
1 & =x y . \tag{3}
\end{align*}
$$

From (1) and (3) we have $z=\nu x^{2}$, then use (2)

$$
\left(\nu x^{2}-a\right) x^{2}=\nu x y=\nu
$$

Since $x y=1, x \neq 0$, so

$$
a=\nu x^{2}-\nu x^{-2}=\nu\left(k^{2}-k^{-2}\right)
$$

where $x^{2}=k^{2}, x y=1$, and $z=\nu x^{2}$. This is exactly the parametric form described in the problem.
c) The Jacobian $A=\left(\begin{array}{ccc}-\nu & z & y \\ z-a & -\nu & x \\ -y & -x & 0\end{array}\right)$ evaluates to $\left(\begin{array}{ccc}-\nu & \nu k^{2} & k^{-1} \\ \nu k^{2}-a & -\nu & k \\ -k^{-1} & -k & 0\end{array}\right)$ at fixed point $\left(k, k^{-1}, \nu k^{2}\right)$. The characteristic polynomial is

$$
f(\lambda)=\lambda^{3}+2 \nu \lambda^{2}+\left[\nu^{2}-\nu k^{2}\left(\nu k^{2}-a\right)+k^{2}+k^{-2}\right) \lambda+2 \nu\left(k^{2}+k^{-2}\right)
$$

Using the relation $a=\nu\left(k^{2}-k^{-2}\right)$ to eliminate a, it follows that

$$
f(\lambda)=\lambda^{3}+2 \nu \lambda^{2}+\left(k^{2}+k^{-2}\right) \lambda+2 \nu\left(k^{2}+k^{-2}\right)=(\lambda+2 \nu)\left(\lambda^{2}+k^{2}+k^{-2}\right)
$$

Therefore the eigenvalues are -2ν and $\pm \sqrt{k^{2}+k^{-2}} i$. Since there are two imaginary eigenvalues, the fixed points are centers.

9.3.8 (Page 344)

a) Yes. D is the set $r \leq 1$. It's clear from $\dot{r}=r\left(1-r^{2}\right)$ that r either stays at 0 or approaches 1 as $t \rightarrow \infty$. So trajectories starting from D will never leave the region.
b) Yes. Any open subset of D can be an open set of initial conditions that are attracted to D (in fact they never leave D). The basin of attraction (we can speak of that even we don't know D is an attractor) of D is the whole plane.
c) No. The circle $x^{2}+y^{2}=1$ is a proper subset of D. It's also invariant and attracts an open set of initial conditions (cf. part d).
d) Yes. First $r^{*}=1$ is a stable fixed point of $\dot{r}=r\left(1-r^{2}\right)$, so $x^{2}+y^{2}=1$ is invariant and any initial condition with $r>0$ will be attracted to $r=1$. Secondly notice that that $\dot{\sigma}=1$, trajectories starting on the circle will wind along it and never stop. So there can be no invariant proper subset of $x^{2}+y^{2}=1$.

9.4.2 (Page 344)

a) Because the graph of $f\left(x_{n}\right)$ looks like a tent.
b) The fixed points satisfy $x^{*}=f\left(x^{*}\right)$, Hence $x^{*}=0$ or $x^{*}=\frac{2}{3}$. Since the multiplier is $\lambda=f^{\prime}\left(x^{*}\right)= \pm 2$, both these fixed points are unstable.
c) We can solve for $p=f(q), q=f(p)$ where $[p, q]$ constitutes a 2 -cycle. Let $p<\frac{1}{2}$ and $q>\frac{1}{2}$, then $2 p=q, p=2-2 q$ gives $p=\frac{2}{5}, q=\frac{4}{5}$. Since the multiplier is $\lambda=\left.[f(f(x))]^{\prime}\right|_{x=p}=$ $f^{\prime}(p) f^{\prime}(f(p))=f^{\prime}(p) f^{\prime}(q)=-4$, the 2-cycle is unstable.
d) Similarily, we can solve for the period-3 and period-4 points by noting that only one of these points in the cycle is greater than $\frac{1}{2}$. Hence $\left[\frac{2}{9}, \frac{4}{9}, \frac{8}{9}\right]$ and $\left[\frac{2}{17}, \frac{4}{17}, \frac{8}{17}, \frac{16}{17}\right]$ are the period-3 and period-4 solutions. (In fact, the general period-n solutions has the form $\left[\frac{2^{1}}{2^{n}+1}, \frac{2^{2}}{2^{n}+1}, \ldots, \frac{2^{n}}{2^{n}+1}\right]$.) Since the multiplier for all a period-n orbit equal to $\prod_{1}^{n} f^{\prime}\left(p_{i}\right)$, where p_{i} are the points on the orbit, the multiplier is always greater than 1 and all the periodic orbit are unstable.

10.1.2 (Page 388)

The fixed points satisfy $x^{*}=\left(x^{*}\right)^{3}$. Hence $x^{*}=0$ or $x^{*}= \pm 1$. The multiplier is $\lambda=f^{\prime}\left(x^{*}\right)=3\left(x^{*}\right)^{2}$. The fixed point $x^{*}=0$ is stable since $|\lambda|=0<1$, and $x^{*}= \pm 1$ is unstable since $|\lambda|=3>1$. If we keep pressing the appropriate function key of a pocket calculater, unless we start at ± 1, eventually we get very close to 0 .

10.1.6 (Page 388)

Line $y=x$ intersects $y=\tan x$ infinitely many times, so there are infinitely many fixed points. For any fixed point x^{*} where $x^{*}=\tan x^{*}$, the multiplier $\lambda=f^{\prime}\left(x^{*}\right)=\sec ^{2}\left(x^{*}\right)$ is always greater than 1 unless $x^{*}=0$. So they're all unstable. Even in the marginal case $x^{*}=0$, it's clear from the cobweb that x^{*} is also unstable since the positive part of the curve $y=\tan x$ containing $(0,0)$ is always above $y=x$ and the negative part below it. Therefore unless we start with a fixed point, we are not likely to get a pattern no matter how many times we press the button.

10.1.11 (Page 388)

a) Fixed points satisfy $x^{*}=f\left(x^{*}\right)=3 x^{*}-\left(x^{*}\right)^{3}$, therefore $x^{*}=0, \pm \sqrt{2}$. The multiplier $\lambda=3\left(1-\left(x^{*}\right)^{2}\right)$ is always greater than 1 , so all these fixed point are unstable.
b, c) Here are the cobweb graphs for $x_{0}=1.9$ (left) and $x_{0}=2.1$ (right).

d) Note that $f(x)$ has local extrema equal to ± 2 at $x= \pm 1$. From the graphs above, we can see that if we start with an initial values x_{0} where $\left|x_{0}\right|<2$, the cobweb will stay inside the square with corners at $(\pm 2, \pm 2)$. However, if we start an initial value x_{0} where $\left|x_{0}\right|>2$, then after the cobweb misses the first peak/valley of $f(x), x_{n}$ will get larger and larger.
10.3.4 (Page 390)
a) Fixed points satisfy $x^{*}=\left(x^{*}\right)^{2}+c$, therefore

$$
x^{*}=\frac{1 \pm \sqrt{1-4 c}}{2}
$$

where $c \leq \frac{1}{4}$. The multiplier $\lambda=2 x^{*}=1 \pm \sqrt{1-4 c}$ is always greater than 1 at the greater fixed point, denoted by x_{1}. So x_{1} is unstable. At the other fixed point x_{2} we have $-1<\lambda<1$ when $-\frac{3}{4}<c<\frac{1}{4}$, so x_{2} is stable when $c>-\frac{3}{4}$, and unstable when $c<-\frac{3}{4}$.
b) It's clear from part a) that a saddle-node bifurcation occurs at $c=\frac{1}{4}$, where two fixed points are created, and a flip bifurcation occurs at $c=-\frac{3}{4}$, where x_{2} loses its stability.
c) To get the 2-cycles we apply $f(x)=x^{2}+c$ to itself and obtain the equation

$$
x=f(f(x))=\left(x^{2}+c\right)^{2}+c
$$

This is a quartic equation, but recall that all the fixed points should satisfy this equation and the fixed points are also roots of $x=x^{2}+c$. So we write $x=f(f(x))$ as

$$
\left(x^{2}-x+c\right)\left(x^{2}+x+c+1\right)=0
$$

and get the other two roots

$$
p, q=\frac{-1 \pm \sqrt{-3-4 c}}{2}
$$

which are real for $c<-\frac{3}{4}$, thus a 2 -cycle exists for all $c<-\frac{3}{4}$. The multiplier of the 2 -cycle is

$$
\lambda=\frac{d}{d x}\left(f(f(x))_{x=p}=f^{\prime}(p) f^{\prime}(q)=4 p q\right.
$$

Notice that p, q are roots of $x^{2}+x+c+1$, so $p q=c+1$. Then $|\lambda|<1$ if $-\frac{5}{4}<c<-\frac{3}{4}$, those are the values of c for which the 2 -cycle is stable. The 2 -cycle is superstable when $\lambda=0$, i.e. $c=-1$.
d) In the bifurcation diagram below, solid lines indicate stable fixed points, dashed lines indicate unstable fixed points, the pair of dashed-dot lines indicate stable 2-cycles. The diagram is drawn according to the results in shown part a, b and c. Notice that the stable part is also part of the orbit diagram.

10.3.6 (Page 390)
a) Fixed points satisfy $x^{*}=r x^{*}-\left(x^{*}\right)^{3}$, therefore

$$
x^{*}=0, \pm \sqrt{r-1},
$$

where $r \geq 1$. The multiplier $\lambda=r-3\left(x^{*}\right)^{2}$ which equal to r for $x^{*}=0$ and $3-2 r$ for $x^{*}= \pm \sqrt{r-1}$. For $|r|<1$, zero fixed point is stable, while for $1<r<2$ the fixed point $x^{*}= \pm \sqrt{r-1}$ is stable.
b) Suppose $f(p)=q$ and $f(q)=p$ and let $s=q^{2}-r$ then we have

$$
\begin{aligned}
r\left(r q-q^{3}\right)-\left(r q-q^{3}\right)^{3} & =q \\
q\left[r\left(r-q^{2}\right)-q^{2}\left(r-q^{2}\right)^{3}-1\right] & =0 \\
q\left[-r s+(s+r) s^{3}-1\right] & =0 \\
q\left[s^{4}+r s^{3}-r s-1\right] & =0 \\
q(s-1)(s+1)\left(s^{2}+r s+1\right) & =0 \\
q\left(q^{2}-r-1\right)\left(q^{2}-r+1\right)\left(q^{4}-r q^{2}+1\right) & =0
\end{aligned}
$$

Solve for q and we have $q=0, \pm \sqrt{r-1}, \pm \sqrt{r+1}, \pm \sqrt{\frac{r \pm \sqrt{r^{2}-4}}{2}}$. Note that the first three solutions are the fixed point. Therefore the 2 -cycles are $[+\sqrt{r+1},-\sqrt{r+1}]$ and $\left[\pm \sqrt{\frac{r+\sqrt{r^{2}-4}}{2}}, \pm \sqrt{\frac{r-\sqrt{r^{2}-4}}{2}}\right.$ for $r>2$.
c) For the 2 -cycle $[+\sqrt{r+1},-\sqrt{r+1}]$, the multipler $\lambda=f^{\prime}(p) f^{\prime}(q)=(r-3(r+1))^{2}=$ $(3+2 r)^{2}$ which is always larger than 1 for $r>-1$. Therefore this 2 -cycle is always unstable.

For $\left[\pm \sqrt{\frac{r+\sqrt{r^{2}-4}}{2}}, \pm \sqrt{\frac{r-\sqrt{r^{2}-4}}{2}}\right.$, the multipler $\lambda=f^{\prime}(p) f^{\prime}(q)=9-2 r^{2}$ which sits between -1 and 1 for $2<r<\sqrt{5}$. Therefore these 2 -cycles are stable for this range of values of r.
d) In the bifurcation diagram below, solid lines indicate stable fixed points, the pair ofdashed-dot lines indicate stable 2-cycles.

