
Solutions 2

3.4.11 (Page 83)

Part a) Fixed points are integral multiples of π.

−2π −π 0 π 2π

Vector Field

Part b) When r > 1, the absolute value of x is always greater than the absolute value of

sin x unless x = 0, which is the only fixed point. The derivative of (rx − sin x) is r − 1 at

point x = 0, since it’s positive x = 0 is unstable.

Vector Field

Part c) As r decreases, the graph of y = rx has more intersections with the graph of

y = sin x, i.e. more fixed points are created. At an intersection point x = c, if (y = sin x)

crosses (y = rx) from the below, then x = c is unstable, and vice versa. When (y = rx)

touches (y = sin x) at a new point, a bifurcation occurs, and after the bifurcation the smaller

fixed point will be unstable.

Notice that 0 is always a fixed point and it changes from unstable to stable as r passes 1.

We conclude that when r decreases from ∞ to 0, there is a subcritical pitchfork bifurcation

at r = 1 and saddle-node bifurcations when 0 < r < 1.

Part d) When r ≪ 1, y = rx touches y = sin x at approximately the peaks of its graph,

i.e. x = π
2 + 2kπ, where k is a positive integer. Therefore bifurcations occur near r = 2π

4k+1 .

Part e) When r further decreases, two loci of fixed points will merge and vanish, which

is clear if you stare the figure in part c for a while. These are also saddle-node bifurcations,

shown below.

3.6.2 (Page 86)

When h = 0 this system is the same as the one in Section 3.2. As h varies, the curves in

the following pictures move vertically.
1



2

r<0

x

V

r=0

x

V

r>0

x

V

Part a) If h < 0, the above curves are shifted down. This could affect the number of

fixed points when r is close to 0. In the bifurcation diagram below, the system has no fixed

point in the middle.

Bifurcation Diagram, h<0
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If h = 0, this system has a transcritical bifurcation, please see Section 3.2.
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If h > 0, the curves are shifted up, there will always be two zeros. Notice that the curves

crosse the x-axis from below at the smaller fixed point, so it’s unstable.

Bifurcation Diagram, h>0
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Part b) Bifurcation occurs precisely if (h+ rx−x2) has only one solution. The quadratic

has discriminant (r2 + 1
4h), which distinguishes qualitatively different vector fields. When

it’s positive, the quadratic has two solutions, of which the smaller one is an unstable fixed

point; when it’s 0, bifurcation occurs; when it’s negative, there’s no fixed point.
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Part c) There are two regions: the region above the curve h = −1
4r2, and the region

below it.
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3.7.3 (Page 89)

Part a) First let x = N
K

, then the system becomes

d(Kx)

dt
= rKx(1 − x) − H,

notice that d(Kx) = Kdx, (rK) is a constant,

1

r

dx

dt
= x(1 − x) −

H

rK
.

Let τ = rt, h = H
rK

, we get the desired dimensionless form.

Part b) The maximum of x(1 − x) is 1
4 , thus x(1 − x) − h can be viewed as a parabola

y = x(1 − x) intersecting y = h. The vector fields are

h<0.25

h>0.25

Vector Fields

Part c) This is equivalent to solving x(1−x)−h = 0, which can be done either by looking

at the graph of y = x(1 − x), or by writing the above as

(x −
1

2
)2 =

1

4
− h.

It’s then clear that there are two fixed points when h < 1
4 and no fixed points when h > 1

4 .

The critical value hc = 1
4 is a saddle-node bifurcation.
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Part d) If h < hc, let xu be the unstable fixed point and xs the stable one. To avoid the

model’s silliness mentioned at the end of the problem, we assume xu > 0. h < hc means

the amount of fishing is moderate. If initially the fish population is small (x < xu), then

eventually there will be no fish left. If x > xu, the population will stabilize at xs, i.e. both

the fish and the fishermen are happy. If h > hc, then the fishermen are asking too much,

eventually there will be no fish left.

3.7.5 (Page 90)

Part a) First take g = k4x, the system becomes

k4ẋ = k1s0 − k2k4x + k3
x2

1 + x2
,

then let s = k1s0

k3
, r = k2k4

k3
and τ = k3

k4
t.

Part b) If s = 0, the two fixed points correspond to the solutions of x
1+x2 = r. The graph

of function y = x
1+x2 looks like

x

y

When r > 0 and r small, there are always two points on y = r. To determine rc, we can

look at the maximum of y. Since

y′ =
1 − x2

(1 + x2)2
,

the maximum is achieved at x = 1, thus rc = 1
2 .

Part c) If r > rc,the graph of y = −rx+ x2

1+x2 looks like the solid line in the picture below
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When s increases, the graph becomes the dashed line. If we start at g(0) = 0, then g

increases as t increases. Now let s go back to 0, then we go back to the solid line, and g

will also return to 0 since it is the only fixed point and it’s stable.

If r < rc, we have the graphs

x

y

As s increases, the gene product g begins to accumulate. If s returns to 0 shortly after

it takes off, then x has a value between 0 and the smaller positive fixed point, which is

unstable. Therefore x will go back to 0 again, i.e. the gene will turn off. But if s stays

positive long enough, so that x can accumulate until it exceeds the smaller fixed point,

then even s goes back to 0, g will still be pushed to the larger fixed point, i.e. the gene is

switched on.

Part d) If r >> rc, there will always be one stable fixed point, no bifurcation occurs. If

r < rc, notice that in the above graph, f(x) = −rx + x2

1+x2 has a minimum fmin, a saddle-

node bifurcation will occur at s = −fmin. To get the parametric form of r and s, recall that

f achieves its minimum when

f ′(x) = −
r + 2rx2 + rx4 − 2x

(1 + x2)2
= 0.

Therefore r = 2x
(1+x2)2 , and s = −fmin = x2(1−x2)

(1+x2)2 .

The interesting case is when r ≥ rc but not too large, which corresponds to the figure

below
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r = −0.55

At s = 0 there is only one fixed point x = 0, but as s increases, there will be three fixed

points.

All the bifurcations in this part are saddle-node bifurcations.

Part e) The graph of (r, s) looks like a triangle,
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We’re only interested in the first quadrant of this diagram.

4.1.2 (Page 113)

The graph of θ̇ = 1 + 2 cos(θ) looks like

θ

We can then draw its phase portrait
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The stable fixed point is θ∗ = 2π
3 while the unstable fixed point is θ∗ = 4π

3 .

4.1.5 (Page 113)

The graph of θ̇ = sin(θ) + cos(θ) looks like

θ

We can then draw its phase portrait

The stable fixed point is θ∗ = 3π
4 while the unstable fixed point is θ∗ = 7π

4 .

4.3.3 (Page 113)

The graphs of θ̇ = µ sin(θ) − sin(2θ) look like

θ
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where, in ascending order, µ = −2,−1, 0, 1, 2. We can draw the phase portraits as follow:

µ ≤ −2 −2 < µ < 0 µ = 0

0 < µ < 2 µ ≥ 2

Hence we can see that for µ = −2, the system undergoes a supercritical pitchfork bifur-

cation at θ∗ = π while for µ = 2, the system undergoes a subcritical pitchfork bifurcation

at θ∗ = 0 (see the bifurcation diagram below).

µ

θ

µ = 2µ = −2 θ = 0

θ = π

θ = −π
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4.3.4 (Page 113) We can draw the phase portraits for θ̇ = sin(θ)
µ+cos(θ) as follow:

µ = <−1 µ = −1 −1< µ < 0

0 < µ < 1 µ = 1 µ > 1

For −1 < µ < 1, there exists two angles θ1, θ2 (denoted as crosses in the above figures)

such that θ̇|θ=θ1,2
are not defined. They are called attractors or finite time singularity since

the flow is toward them but NOT fixed points (as the dynamics is not well defined at

those points). As µ → −1−, the stable fixed point at θ∗ = 0 undergoes a supercritical

bifurcation at µ = −1 and produce the two attractors. On the other hand, as µ → 1−,

two attractors move toward θ∗ = π, indicated by the lines with crosses. It undergoes a

subcritical bifurcation at µ = 1 and produce a stable fixed point at µ = 1. Notice that at

these critical values µ = ± , θ∗ = π, 0 are not longer fixed points but attractors themselves

(see the bifurcation diagram below).
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4.5.3 (Page 116)

Part a) When µ is slightly less than 1, the graph of f(θ) = µ + θ looks like

θ

f

We can then draw its phase portrait

rest state

The stable fixed point is the globally attracting rest state, when θ passes the unstable

fixed point, i.e. the ”threshold”, the system will go almost all the way around the circle

before it returns to the ”rest state”.
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Part b) The dotted line in the figure below correponds to the threshold. If initally θ is

on the right of the threshold, where V is above the dotted line, then V will reach 1 before

it returns to the rest state.
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