Solutions 1

2.2.4 (Page 37)

The fixed points for & = exp(—=x)sin(x) are * = nm, where n is an integer. When
n=...—4,-2,0,2,4,...,z% is unstable, while when n = ... —3,—1,1,3,...,2* is stable.
The graph below shows the solution z(t) for z(0) = —0.5,1 and 4.
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2.2.13 (Page 38)

Part a) Write & = ‘fl—f, then we need to solve

mdv
—— = dt.
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Putting in the condition v(0) = 0 we get C' = 0, therefore the analytical solution is

)=t+C.
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), where r =/gk/m.

As this course does not emphasize on solving ODE, you can just solve it using some math

software such as Matlab, Mathematica, etc.

Part b) When ¢ — oo, both e~ terms in the above vanish and the big fraction becomes

1. The limit is whatever remained which turns out to be (rm)/k = \/mg/k.
1



Part ¢) Now we solve it geometrically, the equation can be written as
V= g— (k/m)v27
and we set it equal to 0. The graph of v versus v is a parabola crossing the z-axis from the
above. The terminal velocity is the stable fixed point v = \/mg/k.

2.3.4 (Page 39)
Part a) The effect growth rate is at its highest (= r) when N = b. If N is either too high

or too low, then the effect growth rate will be negative.

Part b) Fixed points are NT = b+ \/g, N* =b— \/g (provided that b > \/g) and
No = 0. Here N} and Ny are stable while N* is unstable.

Part ¢) The graph below shows the solution N(¢) for N(0) = 50,80,95 and 200 for
r=1,a=0.02,b = 100.
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Part d) Note that when N(0) > N* the behaviour of N(¢) will be the same as the the
solution of the logistic equation (approaches a non-zero fixed point). The different here is
that when N(0) < N*, tehn N(t) — 0.

2.4.2 (Page 40)

The fixed points are 0, 1 and 2. Since f'(z) = z(z — 1) + z(x — 2) + (x — 1)(x — 2), we

have
1'(0) =2, 0 is unstable,
) =-1, 1 is stable,
f(2) =2, 2 is unstable.

2.4.8 (Page 40)



Letting N =0 we get N = 1/b. Taking derivative:

J'(N) = —aln(bN) - 3,
then f'(1/b) = —% <0, 1/b is stable.
2.7.6 (Page 42)
Similar to the above V(z) = —rz — 2% + 12%. Graphs of V(z) for some r values are

shown in the figure. The equilibrium points are the local minima.

- A1l equilibrium points are stable.

2.8.2 (Page 42)
Plots of the slope fields for a) & = x (top left), a) & = 1—x? (top right), a) # = 1—4x(1—x)
(bottom right) and a) & = sin(z) (bottom right).
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2.8.3 (Page 42)

Part a) The solution for & = —x,z(0) = 1 is x(t) = exp(—t) and the exact value for z(1)

is e 1.

Part b & c) Left: The solution found using Euler method with step szie At = 0.01.
Right: Log-log plot of the error E is a function of At (solid lines). Note that the dotted line
represents the plot of At~! due to the fact that the rate of convergence for Euler method

is first order.
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3.1.2 (Page 79)
The graph of the function y =

\bf \log(\Delta t)

coshz is shown below on the right, with dotted lines

indicating the values of r. It’s then clear that x moves to the right when y is below r and

vice versa. The vector fields are sketched as follows

Vector Fields

A bifurcation occurs at r = 1.

Bifurcation Diagram

Graph of y=cosh(x)
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3.2.4 (Page 80) First we plot the graph of & versus z for various
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It’s then clear that the vector fields can be described qualitatively as follows:

Vector Fields

> o < r<=0
< + > o} < O<r<l

< * < r=1

< + > o < r>1

Now we can draw the bifurcation diagram

Bifurcation Diagram
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3.3.2 (Page 82)

r and get the following

Part a) Assume that P ~0,D ~ 0 then, to first order, ED = P and A+ 1 — AEP = D.

Substitute the D = % into the second equation we will have P = (1):&%?.
2
k(P — E), the evolution equation of E is thus F = Mfi—#

Since £ =



Part b) The fixed points of E are E* =0 and E* = 1.
Part ¢) Bifurcation diagram

Bifur0§tion Diagram
E
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3.4.2 (Page 82)

Fixed points of  and r are related by r = %, its graph shows that the critical value
is r = 1. There are two qualitatively different vector fields:

Vector Fields

It’s readily seen that 0 changes from stable to unstable after r passes critical value 1 and

two more stable fixed points are created. This is a pitchfork bifurcation, it’s supercritical.

Bifurcation Diagram
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3.4.6 (Page 83)



We start by solving equation rz = x/(1 + x), 0 is always a solution and another solution
is given by x = 1/r — 1 as long as r is nonzero. The critical values for r are 0 and 1,
representing the cases in which there is only one fixed point.
sketched as follows

The vector fields can be

Vector Fields

B> ¢} < > o < r<o
> o < r=0
> o < + D> O<r<1
> o < r=1

D> [¢) < + >

At r = 1 two fixed points changed their types, this is a transcritical bifurcation.

Bifurcagon Diagram

|

|
|
\

N unstable

stable



