
Solutions 1

2.2.4 (Page 37)

The fixed points for ẋ = exp(−x) sin(x) are x∗ = nπ, where n is an integer. When

n = . . . − 4,−2, 0, 2, 4, . . . , x∗ is unstable, while when n = . . . − 3,−1, 1, 3, . . . , x∗ is stable.

The graph below shows the solution x(t) for x(0) = −0.5, 1 and 4.
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2.2.13 (Page 38)

Part a) Write ẋ = dx
dt

, then we need to solve

mdv

mg − kv2
= dt.

Notice that

m

mg − kv2
=

1

2g
(

1

1 −

√

k
mg

v
+

1

1 +
√

k
mg

v
), (a little tricky)

we get solution
√

m

4gk
(log

1 +
√

k
mg

v

1 −

√

k
mg

v
) = t + C.

Putting in the condition v(0) = 0 we get C = 0, therefore the analytical solution is

v =
rm

k
(
ert

− e−rt

ert + e−rt
), where r =

√

gk/m.

As this course does not emphasize on solving ODE, you can just solve it using some math

software such as Matlab, Mathematica, etc.

Part b) When t → ∞, both e−rt terms in the above vanish and the big fraction becomes

1. The limit is whatever remained which turns out to be (rm)/k =
√

mg/k.
1



2

Part c) Now we solve it geometrically, the equation can be written as

v̇ = g − (k/m)v2,

and we set it equal to 0. The graph of v̇ versus v is a parabola crossing the x-axis from the

above. The terminal velocity is the stable fixed point v =
√

mg/k.

2.3.4 (Page 39)

Part a) The effect growth rate is at its highest (= r) when N = b. If N is either too high

or too low, then the effect growth rate will be negative.

Part b) Fixed points are N∗

+ = b +
√

r
a
, N∗

−
= b −

√

r
a

(provided that b >
√

r
a
) and

N0 = 0. Here N∗

+ and N0 are stable while N∗

−
is unstable.

Part c) The graph below shows the solution N(t) for N(0) = 50, 80, 95 and 200 for

r = 1, a = 0.02, b = 100.
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Part d) Note that when N(0) > N∗

−
the behaviour of N(t) will be the same as the the

solution of the logistic equation (approaches a non-zero fixed point). The different here is

that when N(0) < N∗

−
, tehn N(t) → 0.

2.4.2 (Page 40)

The fixed points are 0, 1 and 2. Since f ′(x) = x(x − 1) + x(x − 2) + (x − 1)(x − 2), we

have

f ′(0) = 2, 0 is unstable,

f ′(1) = −1, 1 is stable,

f ′(2) = 2, 2 is unstable.

2.4.8 (Page 40)
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Letting Ṅ = 0 we get N = 1/b. Taking derivative:

f ′(N) = −aln(bN) −
a

b
,

then f ′(1/b) = −
a
b

< 0, 1/b is stable.

2.7.6 (Page 42)

Similar to the above V (x) = −rx −
1
2x2 + 1

4x4. Graphs of V (x) for some r values are

shown in the figure. The equilibrium points are the local minima.

2.8.2 (Page 42)

Plots of the slope fields for a) ẋ = x (top left), a) ẋ = 1−x2 (top right), a) ẋ = 1−4x(1−x)

(bottom right) and a) ẋ = sin(x) (bottom right).
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2.8.3 (Page 42)

Part a) The solution for ẋ = −x, x(0) = 1 is x(t) = exp(−t) and the exact value for x(1)

is e−1.

Part b & c) Left: The solution found using Euler method with step szie ∆t = 0.01.

Right: Log-log plot of the error E is a function of ∆t (solid lines). Note that the dotted line

represents the plot of ∆t−1 due to the fact that the rate of convergence for Euler method

is first order.
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3.1.2 (Page 79)

The graph of the function y = coshx is shown below on the right, with dotted lines

indicating the values of r. It’s then clear that x moves to the right when y is below r and

vice versa. The vector fields are sketched as follows

Vector Fields
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3.2.4 (Page 80) First we plot the graph of ẋ versus x for various r and get the following

picture:
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It’s then clear that the vector fields can be described qualitatively as follows:
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0<r<1

r = 1

r > 1

Vector Fields

Now we can draw the bifurcation diagram

Bifurcation Diagram
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3.3.2 (Page 82)

Part a) Assume that Ṗ ≈ 0, Ḋ ≈ 0 then, to first order, ED = P and λ + 1 − λEP = D.

Substitute the D = E
P

into the second equation we will have P = (λ+1)E
1+λE2 . Since Ė =

κ(P − E), the evolution equation of E is thus E = λκ(1−E2)E
1+λE2 .
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Part b) The fixed points of E are E∗ = 0 and E∗ = 1.

Part c) Bifurcation diagram

Bifurcation Diagram

λ
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3.4.2 (Page 82)

Fixed points of x and r are related by r = sinhx
x

, its graph shows that the critical value

is r = 1. There are two qualitatively different vector fields:

r < 1

r > 1

Vector Fields

It’s readily seen that 0 changes from stable to unstable after r passes critical value 1 and

two more stable fixed points are created. This is a pitchfork bifurcation, it’s supercritical.
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3.4.6 (Page 83)
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We start by solving equation rx = x/(1 + x), 0 is always a solution and another solution

is given by x = 1/r − 1 as long as r is nonzero. The critical values for r are 0 and 1,

representing the cases in which there is only one fixed point. The vector fields can be

sketched as follows

r < 0

r = 0

0<r<1

r = 1

r > 1

Vector Fields

At r = 1 two fixed points changed their types, this is a transcritical bifurcation.
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