Solutions 1

2.2.4 (Page 37)

The fixed points for $\dot{x}=\exp (-x) \sin (x)$ are $x^{*}=n \pi$, where n is an integer. When $n=\ldots-4,-2,0,2,4, \ldots, x^{*}$ is unstable, while when $n=\ldots-3,-1,1,3, \ldots, x^{*}$ is stable. The graph below shows the solution $x(t)$ for $x(0)=-0.5,1$ and 4 .

2.2.13 (Page 38)

Part a) Write $\dot{x}=\frac{d x}{d t}$, then we need to solve

$$
\frac{m d v}{m g-k v^{2}}=d t
$$

Notice that

$$
\frac{m}{m g-k v^{2}}=\frac{1}{2 g}\left(\frac{1}{1-\sqrt{\frac{k}{m g}} v}+\frac{1}{1+\sqrt{\frac{k}{m g}} v}\right), \quad \text { (a little tricky) }
$$

we get solution

$$
\sqrt{\frac{m}{4 g k}}\left(\log \frac{1+\sqrt{\frac{k}{m g}} v}{1-\sqrt{\frac{k}{m g}} v}\right)=t+C
$$

Putting in the condition $v(0)=0$ we get $C=0$, therefore the analytical solution is

$$
v=\frac{r m}{k}\left(\frac{e^{r t}-e^{-r t}}{e^{r t}+e^{-r t}}\right), \quad \text { where } \quad r=\sqrt{g k / m}
$$

As this course does not emphasize on solving ODE, you can just solve it using some math software such as Matlab, Mathematica, etc.

Part b) When $t \rightarrow \infty$, both $e^{-r t}$ terms in the above vanish and the big fraction becomes 1. The limit is whatever remained which turns out to be $(r m) / k=\sqrt{m g / k}$.

Part c) Now we solve it geometrically, the equation can be written as

$$
\dot{v}=g-(k / m) v^{2},
$$

and we set it equal to 0 . The graph of \dot{v} versus v is a parabola crossing the x-axis from the above. The terminal velocity is the stable fixed point $v=\sqrt{m g / k}$.

2.3.4 (Page 39)

Part a) The effect growth rate is at its highest $(=r)$ when $N=b$. If N is either too high or too low, then the effect growth rate will be negative.

Part b) Fixed points are $N_{+}^{*}=b+\sqrt{\frac{r}{a}}, N_{-}^{*}=b-\sqrt{\frac{r}{a}}$ (provided that $b>\sqrt{\frac{r}{a}}$) and $N_{0}=0$. Here N_{+}^{*} and N_{0} are stable while N_{-}^{*} is unstable.

Part c) The graph below shows the solution $N(t)$ for $N(0)=50,80,95$ and 200 for $r=1, a=0.02, b=100$.

Part d) Note that when $N(0)>N_{-}^{*}$ the behaviour of $N(t)$ will be the same as the the solution of the logistic equation (approaches a non-zero fixed point). The different here is that when $N(0)<N_{-}^{*}$, tehn $N(t) \rightarrow 0$.

2.4.2 (Page 40)

The fixed points are 0,1 and 2. Since $f^{\prime}(x)=x(x-1)+x(x-2)+(x-1)(x-2)$, we have

$$
\begin{aligned}
& f^{\prime}(0)=2, \quad 0 \text { is unstable, } \\
& f^{\prime}(1)=-1, \quad 1 \text { is stable }, \\
& f^{\prime}(2)=2, \quad 2 \text { is unstable. }
\end{aligned}
$$

2.4.8 (Page 40)

Letting $\dot{N}=0$ we get $N=1 / b$. Taking derivative:

$$
f^{\prime}(N)=-a \ln (b N)-\frac{a}{b},
$$

then $f^{\prime}(1 / b)=-\frac{a}{b}<0,1 / b$ is stable.

2.7.6 (Page 42)

Similar to the above $V(x)=-r x-\frac{1}{2} x^{2}+\frac{1}{4} x^{4}$. Graphs of $V(x)$ for some r values are shown in the figure. The equilibrium points are the local minima.

2.8.2 (Page 42)

Plots of the slope fields for a) $\dot{x}=x$ (top left), a) $\dot{x}=1-x^{2}$ (top right), a) $\dot{x}=1-4 x(1-x)$ (bottom right) and a) $\dot{x}=\sin (x)$ (bottom right).

2.8.3 (Page 42)

Part a) The solution for $\dot{x}=-x, x(0)=1$ is $x(t)=\exp (-t)$ and the exact value for $x(1)$ is e^{-1}.

Part b \& c) Left: The solution found using Euler method with step szie $\Delta t=0.01$.
Right: Log-log plot of the error E is a function of Δt (solid lines). Note that the dotted line represents the plot of Δt^{-1} due to the fact that the rate of convergence for Euler method is first order.

3.1.2 (Page 79)

The graph of the function $y=\cosh x$ is shown below on the right, with dotted lines indicating the values of r. It's then clear that x moves to the right when y is below r and vice versa. The vector fields are sketched as follows

Vector Fields		
$\checkmark \quad+$	\triangleright - \downarrow	$r=6$
\triangleleft	\triangle - $\square^{\text {a }}$	$r=4$
\triangleleft	\triangleleft	$r=1$
	4	$r=0.5$

A bifurcation occurs at $r=1$.

3.2.4 (Page 80) First we plot the graph of \dot{x} versus x for various r and get the following picture:

It's then clear that the vector fields can be described qualitatively as follows:

Vector Fields							
\triangleright			\bigcirc 4			$\mathrm{r}<=0$
\triangleleft	$+\cdots \cdots$	-	\bigcirc	…4. 4			$0<r<1$
\triangleleft			*	-			$r=1$
	\cdots		+	®	\bigcirc	\triangleleft	$r>1$

Now we can draw the bifurcation diagram

3.3.2 (Page 82)

Part a) Assume that $\dot{P} \approx 0, \dot{D} \approx 0$ then, to first order, $E D=P$ and $\lambda+1-\lambda E P=D$. Substitute the $D=\frac{E}{P}$ into the second equation we will have $P=\frac{(\lambda+1) E}{1+\lambda E^{2}}$. Since $\dot{E}=$ $\kappa(P-E)$, the evolution equation of E is thus $E=\frac{\lambda \kappa\left(1-E^{2}\right) E}{1+\lambda E^{2}}$.

Part b) The fixed points of E are $E^{*}=0$ and $E^{*}=1$.
Part c) Bifurcation diagram

3.4.2 (Page 82)

Fixed points of x and r are related by $r=\frac{\sinh x}{x}$, its graph shows that the critical value is $r=1$. There are two qualitatively different vector fields:

It's readily seen that 0 changes from stable to unstable after r passes critical value 1 and two more stable fixed points are created. This is a pitchfork bifurcation, it's supercritical.

3.4.6 (Page 83)

We start by solving equation $r x=x /(1+x), 0$ is always a solution and another solution is given by $x=1 / r-1$ as long as r is nonzero. The critical values for r are 0 and 1 , representing the cases in which there is only one fixed point. The vector fields can be sketched as follows

At $r=1$ two fixed points changed their types, this is a transcritical bifurcation.

