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Abstract

Molecular dynamics refers to the computer simulation of a material at the atomic
level. An open problem in numerical analysis is to explain the apparent reliabil-
ity of molecular dynamics simulations. The difficulty is that individual trajecto-
ries computed in molecular dynamics are accurate for only short time intervals,
whereas apparently reliable information can be extracted from very long-time sim-
ulations. It has been conjectured that long molecular dynamics trajectories have
low-dimensional statistical features that accurately approximate those of the origi-
nal system. Another conjecture is that numerical trajectories satisfy the shadowing
property: that they are close over long time intervals to exact trajectories but with
different initial conditions. We prove that these two viewsare actually equivalent to
each other, after we suitably modify the concept of shadowing. A key ingredient of
our result is a general theorem that allows us to take random elements of a metric
space that are close in distribution and embed them in the same probability space
so that they are close in a strong sense. This result is similar to the Strassen-Dudley
Theorem except that a mapping is provided between the two random elements. Our
results on shadowing are motivated by molecular dynamics but apply to the approx-
imation of any dynamical system when initial conditions areselected according to
a probability measure.

1 Introduction

In the form we consider here, molecular dynamics consists ofmodeling an atom-
istic system with a system of Hamiltonian ordinary differential equations that are
numerically integrated. For given initial conditions information of physical interest
is extracted from the resulting approximate trajectories [11,1,20]. Despite the sci-
entific importance of molecular dynamics there is very little rigorous justification
of the results it produces. The problem is that individual trajectories computed by
molecular dynamics simulations are accurate for only shorttime intervals. Numer-
ical trajectories diverge rapidly from true trajectories given the step-lengths used in
practice. This phenomenon is well-known but is not considered a short-coming of
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molecular dynamics in practical terms [11, p. 81]. Experience has suggested that
the features of trajectories that researchers wish to studyare computed accurately.
However, that trajectories are reliable in this sense has yet to be rigorously demon-
strated in representative cases.

Two proposals have emerged to explain the success of molecular dynamics given
the inaccuracy of the computed trajectories [28]. The first we refer to asapproxi-
mation in distributionand the second asshadowing.

The idea of approximation in distribution is to view both exact trajectories and nu-
merical trajectories as stochastic processes. This is doneby drawing initial condi-
tions from a physically appropriate probability distribution rather than considering
a single fixed initial condition. Both the resulting numerical trajectory and the re-
sulting exact trajectory are then random. The proposal is that in some distributional
(statistical) sense the numerical trajectories and exact trajectories are close to each
other. This means roughly that the probability of some eventhappening for the nu-
merical trajectory is close to that of the same event happening for the exact trajec-
tory. Put in this way, approximation in distribution may nothold for arbitrary events
which depend on the position of every single atom in the system. However, usually
we are only interested in low-dimensional functions of the state of the full system.
An example we shall consider in the following is when one is only interested in
the position of a single particle in a system consisting of many particles. It may be
that for systems studied in molecular dynamics statisticalfeatures of trajectories
of single particles are reproduced accurately in simulations. Approximation in dis-
tribution for low dimensional functions of numerical trajectories has been studied
for model systems in [7,14,32] using a combination of analysis and computational
experiments, though it has not been established for more realistic systems.

The idea of shadowing is to show that, even though a numericaltrajectory diverges
rapidly from the corresponding exact trajectory, it may be possible to show that the
numerical trajectory is close to another exact trajectory with different initial con-
ditions. If shadowing holds, then numerical trajectories from molecular dynamics
simulations can be viewed as real trajectories with some small observational er-
ror. Shadowing has been established for various types of dynamical systems with
uniform hyperbolicity properties [22] and these ideas havebeen applied to Hamilto-
nian dynamical system such as those studied in molecular dynamics [23]. However,
shadowing over arbitrarily long time intervals is probablynot possible for realistic
Hamiltonian systems [12]. Moreover, shadowing as it is usually defined does not
guarantee that statistical features of numerical trajectories match those of the exact
trajectories [15]. We will discuss these issues further andshow how to modify the
concept of shadowing suitably so that it is applicable to ourcase and to other situa-
tions where the initial conditions of the dynamical system are distributed according
to some probability measure.

The main purpose of this paper is to carefully define and quantify these two con-
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cepts, approximation in distribution and shadowing, in thecontext of molecular dy-
namics and to explain the relation between them. Our main result shows that when
the two concepts are formalized and suitably modified they are actually equivalent.

In Section 2 we introduce a model system for molecular dynamics and present the
results of some numerical experiments performed with it. Wefirst demonstrate that
numerical trajectories using practical time steps divergerapidly from exact trajec-
tories. We then provide evidence that statistical featuresof some low-dimensional
functions of the trajectories are nevertheless reliable.

In Section 3 we discuss approximation in distribution and shadowing in detail and
give quantitative versions of each idea. In particular we show how to adapt the idea
of shadowing to situations where initial conditions are distributed according to a
probability measure. Our concept, which is a modification ofthe usual notion of
shadowing for dynamical systems, we call Weak Shadowing.

In Section 4 we prove our main result, Theorem 1, which we state here. In what
follows, the space(C[0,T])m is the set of all continuous trajectories on[0,T] taking
values inRm. Forx,y∈ (C[0,T])m, we define‖x−y‖∞ = supt∈[0,T] |x(t)−y(t)|. We

let Π be a mapRm → R
k and we defineΠ(x) ∈ (C[0,T])k by Π(x)(t) = Π(x(t))

for anyx∈ (C[0,T])m. We letX0 be a random initial condition inRm and then de-
note byX the random member of(C[0,T])m starting atX0 and generated by the
differential equations. When we use a numerical method to generate an approxi-
mate solution to the differential equations at a sequence ofpoints, we useX∆T to
denote the random element of(C[0,T])m generated by its linear interpolation. Fi-
nally, we denote byρ the well-known Prokhorov metric on random elements of
metric spaces which we will define in Subsection 3.1. It metrizes convergence in
distribution so that if two random elements of a metric spaceare close according to
ρ they have approximately the same distribution.

Theorem 1 Let X0 be a random vector inRm such thatP(X0 = x) = 0 for any
x∈ R

m. Let X be the random trajectory in(C[0,T])m generated by a system of dif-
ferential equations starting from X0. Let X∆t be the random trajectory of(C[0,T])m

generated by a numerical method starting at X0. Let Π : R
m → R

k be a map. Then
the following are equivalent for allε > 0:
(A) Approximation in distribution .

ρ(Π(X),Π(X∆t)) < ε.

(B) Weak Shadowing. There is a mapS∆t : R
m → R

m such that Y0 = S∆tX0 has
the same probability distribution as X0 and if Y is the random member of(C[0,T])m

starting at Y0 generated by the flow of the differential equations then

P(‖Π(X∆t)−Π(Y)‖∞ > ε) < ε.
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Note that no assumptions are made about the differential equations that generate the
exact trajectoryX nor about the numerical method that generates the approximate
trajectoryX∆. The theorem just asserts that two ways in which a numerical method
can be accurate, (A) and (B), are equivalent. The theorem does not assert that (A)
or (B) holds for any particular system or any particular method.

Showing that (B) implies (A) is straightforward, but the converse requires the result
of Theorem 5, which is a version of the Strassen-Dudley theorem [30], [9, §11.6].
The original Strassen-Dudley Theorem shows that two randomvariables that are
close with respect to the Prokhorov metricρ can be embedded in a new probability
space where they are close in a strong sense. Our contribution is to show how to do
this with one random variable defined as a function of the other. The only important
extra assumption needed is that the measures induced by the random variables be
non-atomic, which means that they assign zero measure to anypoint.

Finally, in Section 5 we conclude with a discussion of what our result suggests for
the numerical analysis of molecular dynamics.

2 Numerical Experiments

We consider a system ofn = 100 point particles interacting on an 11.5 by 11.5
square periodic domain. We letq ∈ T

2n andp ∈ R
2n denote the positions and ve-

locities of the particles, withqi ∈ T
2, pi ∈ R

2 denoting the position and velocity
of particle i. The motion of the particles is described by a system of Hamiltonian
differential equations:

dq
dt

=
∂H
∂ p

,
dp
dt

= −
∂H
∂q

, (2.1)

with Hamiltonian

H(q, p) =
1
2
‖p‖2

2+ ∑
i< j

VLJ(‖qi −q j‖).

HereVLJ denotes the famous Lennard-Jones potential [11]. In our simulations we
use a truncated but infinitely smooth version [29, p. 2409]:

VLJ(r) =







4
(

1
r12 −

1
r6

)

exp[(r − rcutoff)
−1], if r ≤ rcutoff,

0, otherwise.

We setrcutoff = 2.5.

For our first numerical experiments we take our initial conditionsq(0), p(0) to be
randomly distributed according to the probability densityfunction

Ce−βH(q,p), (2.2)
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whereC is chosen so that
∫

Ce−βH(q,p) dqdp= 1. The probability distribution with
this density function is known as the canonical distribution for the system with
HamiltonianH at temperatureβ−1. It is intended to model the equilibrium distribu-
tion of the system when it is in thermal contact with an environment of temperature
β−1 [24, Sec. 6.2]. For our experiments we fixedβ = 1 and generate(q(0), p(0))
according to (2.2) using Langevin dynamics [6]. We then subtract a constant vec-
tor from the velocities of all the particles so that center ofmass of the system has
zero velocity. The canonical distribution for anyβ > 0 with this adjustment is in-
variant with respect to the dynamics described by (2.1). Later in this section we
will perform further experiments with a nonequilibrium distribution on the initial
conditions.

We numerically integrate (2.1) using the Störmer-Verlet scheme, which is an ex-
plicit second-order method for our system [13]. It is the standard numerical integra-
tor used in molecular dynamics [11, p. 69]. Given an initial(q0, p0) = (q(0), p(0))
and a∆t > 0, the Störmer-Verlet scheme generates a sequence of states (qn, pn),
n≥ 0 such that(qn, pn) ≈ (q(n∆t), p(n∆t)). The version of the algorithm we use is

qn+1/2 = qn+ pn∆t/2,

pn+1 = pn−∆t∇V(qn+1/2),

qn+1 = qn+ pn+1∆t/2,

A practical steplength for simulations of our system with the Störmer-Verlet method
is ∆t = 0.01. This choice of∆t is close to the largest for which the system can be
integrated without an explosive instability in energy on the interval[0,1000] for the
initial conditions we consider.

In the introduction we mentioned that researchers only consider low dimensional
information from a molecular dynamics simulations. For ournumerical experi-
ments we will consider the configuration over time of the firstparticle: q1(t) ∈
T

2, t ∈ [0,T]. For the purposes of our experiments it helps to view the motion of
the particle as occurring inR2 and starting at the origin. To this end, for the exact
trajectory we define

Q(t) =
∫ t

0
p1(s)ds,

and letQx(t) andQy(t) denote the respectivex andy coordinates. We have that
Qx(0) = Qy(0) = 0 and if we lett vary in [0,T] thenQ∈ (C[0,T])2. Similarly, for
the numerical trajectory for each∆t we define

Qn =
n−1

∑
i=0

pi .

We then defineQ∆t to be the linear interpolation the theQn at the timesn∆t so that
Q∆t ∈ (C[0,T])2.
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Fig. 1. First set of experiments. Plots of realizations ofQ∆t,x vs.Q∆t,y for three different ini-
tial conditions over the time interval[0,20] with ∆t = 0.01. The initial position is designated
by a circle and the final position by an X.

Our first set of numerical experiments demonstrates the qualitative features of the
trajectoriesQ over the time interval[0,20]. We select three random initial condi-
tions from the distribution given by (2.2) and plot in Figure1 the resulting numeri-
cal trajectories when∆t = 0.01. At the scale shown here there was not a noticeable
qualitative difference between these plots and the similarplots generated with a
smaller∆t. The motion is highly irregular, looking somewhat like Brownian mo-
tion in R

2. However, unlike Brownian motion, the exact trajectoriesQ are infinitely
smooth. The interpolated numerical approximationsQ∆t are piecewise linear.

Our second set of experiments demonstrates that individualtrajectories computed
using the timestep∆t = 0.01 are not accurate over time scales of interest. We ran-
domly generate one initial condition according to the canonical distribution and
then simulate over[0,10] for ∆t = 0.01,0.005,0.0025. In Figure 2 we plotQ∆t,x(t)
versust for each of these steplengths. If the trajectory computed with steplength
∆t = 0.01 is accurate over the time interval[0,10], we expect that reducing the time
step by a factor of two would not yield a significantly different curve. However,
we see that the two curves for∆t = 0.01 and∆t = 0.005 very quickly diverge.
Moreover, we see that the trajectory with∆t = 0.005 is not accurate either, since it
diverges quickly from the trajectory with timestep∆t = 0.0025. Obtaining an ac-
curate trajectory over the interval[0,10] and certainly over[0,100] would require
∆t to be considerably smaller than what is used in practice. This same convergence
behaviour is observed for all initial conditions selected according to the canonical
distribution.

Our third set of experiments shows that despite the inaccuracy of individual simu-
lations of the system, the statistical features of numerical trajectories appear to be
highly accurate even for∆t = 0.01. Again we consider the trajectory of a single
particle for initial conditions drawn from the distribution defined by (2.2). For each
randomly generated initial condition we compute the value of a collection of func-
tionals of the numerical trajectories over the time intervals [0,100] and [0,1000].
We plot these values in histograms in order to observe the distribution of each
functional. We do this for each of∆t = 0.01,0.005,0.0025 and for five functionals
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Fig. 2. Second set of experiments. ComputedQ∆t(t) versust for fixed initial conditions for
a range of∆t.

of the trajectory. The functionalsFi : (R[0,T])2 → R we consider are

F1(Q)= Qx(T),

F2(Q)=
1
T

∫ T

0
Qx(t)sin(2πt/T)dt,

F3(Q)= max
t∈[0,T]

‖Q(t)‖,

F4(Q)= min{t ∈ [0,T] : ‖Q(t)‖ ≥ 1},

F5(Q)=
(Q(T)−Q(T − τ))T(Q(T − τ)−Q(T −2τ))

‖Q(T)−Q(T − τ)‖‖Q(T − τ)−Q(T −2τ)‖
, τ = 0.1.

F1 is simply thex-position of the particle at timeT. F2 is the average ofQx(t)sin(2πt/T)
over [0,T]. F3 is the maximum distance from its initial condition that the particle
attains on[0,T]. F4 is the first time at which the particle leaves a ball of radius 1
centred at its initial condition. Its value was set toT if the particle did not leave
within [0,T]. F5 is the cosine of the angle between two adjacent increments ofQ
just before timeT.

In Figure 3 we show histograms ofFi(Q∆t) for i = 1, . . . ,5 with the different values
of ∆t over the time interval[0,100]. We also show the analogous histograms for
two-dimensional Brownian motionB(t) scaled so thatBx(t) and Q∆t,x have the
same variance. We see that for all five functions the histogram generated does not
appear to depend on the steplength used. As well, we see that for some of theFi

this matches closely the same histogram for Brownian motion, whereas for others it
does not. Note that we do not expect the histograms ofQ∆t to converge to those for
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Fig. 3. Third set of experiments for the time interval[0,100]. Histograms ofFi(Q∆t) for
i = 1, . . . ,5. Each plot shows the result for the numerical trajectory with ∆t = 0.01 (solid),
∆t = 0.005 (dashed),∆t = 0.0025 (dash-dot), as well as for Brownian motion (grey).

B: the exact trajectoryQ and Brownian motionB do not have the same distribution.
These results are duplicated in Figure 4 where we show the analogous plots for the
time interval[0,1000].

Finally, in our fourth numerical experiment we repeat the previous experiment but
we start with initial conditions that are drawn from a non-equilibrium distribution.
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Fig. 4. Third set of experiments for the time interval[0,1000]. Histograms ofFi(Q∆t) for
i = 1, . . . ,5. Each plot shows the result for the numerical trajectory with ∆t = 0.01 (solid),
∆t = 0.005 (dashed),∆t = 0.0025 (dash-dot), as well as for Brownian motion (grey).

We randomly generate the initial conditions by first drawingfrom the equilibrium
distribution (2.2) as before. We then add 10 to the velocity in thex direction of
the first particle. The typical trajectory arising from an initial condition selected in
this way involves the first particle rapidly losing its excess energy through collisions
with the other particles. Within 10 time units the system is effectively indistinguish-
able from one started in the equilibrium state. As before, wegenerate histograms of
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Fig. 5. Fourth set of experiments. Using initial conditionsdrawn from a non-equilibrium
distribution over the time interval[0,10]. Histograms ofFi(Q∆t) for i = 1, . . . ,5. Each plot
shows the result for the numerical trajectory with∆t = 0.01 (solid),∆t = 0.005 (dashed),
∆t = 0.0025 (dash-dot).

the functionsF1, . . . ,F5, but now over the time interval[0,10] in order to highlight
the effects of the nonequilibrium initial conditions. Figure 5 shows the results of
these simulations.

For both the simulations from equilibrium and from non-equilibrium initial con-
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ditions the histograms for all the functionalsF1, . . . ,F5 are virtually identical for
the different step-lengths, in contrast to the case where weexamined single trajec-
tories. Any differences are well within the statistical error due to sampling only a
finite number of trajectories. This suggests that computed distributions of the func-
tionals with∆t = 0.01 are fairly accurate for the distributions on the initial condi-
tions we consider. The non-rigorous argument for this belief is is as follows. If the
histograms were not accurate for the step length we were using, then reducing the
steplength would cause the histogram to move significantly closer to the histogram
for the exact solution. Thus the histogram would not stay thesame after halving the
steplength. The defect in this argument is that there could in theory be a broad range
of values of∆t for which the apparently same wrong histogram is computed. An
approximately correct histogram could be only observed fora ∆t much small than
what we use. Despite this possibility, researchers generally trust histograms and
other statistical information extracted from molecular dynamics trajectories [11].

3 Two Approaches

Here we review two different proposals for the success of molecular dynamics:
approximation in distributionandweak shadowing. For a distinct but related per-
spective, see [27].

In the following (C[0,T])m denotes functionsx: [0,T] → R
m. We useX0 to de-

note a random initial condition inRm, X ∈ (R[0,T])m to denote the random exact
trajectory of a dynamical system starting atX0, andX∆t ∈ (C[0,T])m the random ap-
proximate trajectory with the same initial condition. We imagine the approximate
trajectory to be generated by using a numerical method with steplength∆t and then
linearly interpolating the result. We measure the distancebetween two members
x,y of (R[0,T])m by d(x,y) = ‖x−y‖∞ = supt∈[0,T] |x(t)−y(y)|. Let Π : R

m → R
k

be a map that extracts some low dimensional information fromthe system, so that
the resulting low dimensional trajectories in(C[0,T])k areΠ(X) andΠ(X∆t).

3.1 Approximation in Distribution

One explanation for the reliability of molecular dynamics is that if we let the initial
condition of a simulation be random, then the distribution of the resulting numerical
trajectory, seen as a random path in(C[0,T])m, is close to the distribution of the
actual trajectory. We say that the trajectory is approximated in distribution. This
is also known as weak approximation. Here we review some of the basic facts of
approximation in distribution [3].

Given a random variableX taking values inR, its distribution is the probability
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measure on(R,B) defined byµ(A) = P(X ∈ A) for A ∈ B. HereB is the Borel
subsets ofR. We say that two random variablesX andY have the same distribution
if P(X ∈ A) = P(Y ∈ A) for all A∈B. This is equivalent toE f (X) = E f (Y) for all
measurablef . Note that two random variables need not be close on a realization-
by-realization basis in order for their distributions to beidentical.

The concept of distribution extends naturally to random vectors taking values inRm

and indeed to random elements of any metric space as follows.Consider a metric
space(S ,d) with metric d and letB be the Borel subsets ofS induced byd.
A random element ofS is a measurable functionX : Ω → S where(Ω,F ,P) is
some probability space. The distribution ofX onS is the probability measure given
by µ(A) = P(X ∈ A). As in the case of random variables, two random elementsX
andY of S can have the same distribution withoutX(ω) andY(ω) being close for
any fixedω ∈ Ω.

Suppose we want to quantify how close the distributions of two random elements of
a metric space are to each other. A natural way to do this is to define a metric on the
space of random elements of a metric space. One popular choice is the Prokhorov
metric,ρ , which we define here. It has the property that ifρ(X,Y) = 0 for random
elementsX andY if and only if X andY have identical distributions.

For a setA⊂ Sandε ≥ 0 we defineAε , the set of all points within distanceε of A
by

Aε = {x∈ S| inf
y∈A

d(x,y) ≤ ε} = {x∈ S| d(x,A) ≤ ε}. (3.1)

The Prokhorov metric is defined as follows.

Definition 2 [3, p. 72] For random variables X and Y in S

ρ(X,Y) := inf {ε > 0 | P(X ∈ A) ≤ P(Y ∈ Aε)+ ε} .

If we identify random elements ofS that have the same distribution, thenρ is a
metric on the set of random elements [9, p. 394]. If(S,d) is separable (as are all
examples in this paper) random elementsXn converge in distribution toX if and
only if ρ(Xn,X) → 0 [9, p. 395]. Note thatρ(X,Y) ≤ 1 always.

A straightforward way to measure how closeX is toX∆t in distribution is to consider
ρ(X,X∆t), where we viewX andX∆t as random elements of(C[0,T])m. However,
we generalize this idea by measuring how close the distributions of low dimen-
sional functions of the full trajectories are. We consider the mapΠ : R

m → R
k,

and we measureρ(Π(X),Π(X∆t)), whereΠ(X) andΠ(X∆t) are random elements
of (C[0,T])k. Choosingk = m andΠ to be the identity gives the approximation in
distribution ofX∆t to X so this is a generalization of the original idea. As an exam-
ple, suppose the differential equations definingX describe the motion of a system
of particles inR

2, so that the dimension of the system is 4n. To study the position
of one particle as a function of time, one could letΠ : R

4n → R
2 be the function
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that simply returns the position of the first particle in the system. This choice in
analogous to what we did for our model system in Section 2.

With these definitions in mind, we are led to a quantification of our belief thatΠ(X)
andΠ(X∆t) are close in distribution: we conjecture that

ρ(Π(X),Π(X∆t)) < ε, (3.2)

for some smallε. For the conjecture to be applicable to molecular dynamics,we
must be able to controlε and the length of the time intervalT in terms of∆t. We
conjecture that for all sufficiently small∆t there are someC,D,E, p > 0

ρ(Π(X),Π(X∆t)) < C∆t p,

for T < Dexp(−E/∆t).

One of the consequences of approximation in distribution with respect to the Prokhorov
metric is that it allows us to bound the error we make in computing the expectation
of functionals of the paths. Suppose thatG : (C[0,T])k → R is a bounded Lipschitz
continuous function of the paths. Let the norm‖ · ‖BL be defined on the set of all
suchG by

‖G‖BL := sup
x
|G(x)|+sup

x6=y

|G(x)−G(y)|
‖x−y‖∞

,

where the suprema are taken over allx,y∈ (C[0,T])k [9, p. 390]. We can define a
another metric on the space of random elements of(C[0,T])k by

β (X,Y) := sup
‖G‖BL≤1

|EG(X)−EG(Y)|,

originally defined in [10]. For any two random elementsX andY of a metric space,
we have [9, p. 398]

ρ(X,Y) ≤

(

3
2

β (X,Y)

)1/2

, (3.3)

and [9, p. 411]

β (X,Y) ≤ 2ρ(X,Y).

So (3.2) would implyβ (Π(X),Π(X∆t) < 2ε, and so

|EG(Π(X))−EG(Π(X∆t))| < 2‖G‖BLε. (3.4)

Of course, most functionsG of interest are not bounded, but similar results can
be obtained for unbounded, locally LipschitzG in the case thatG(Π(X)) and
G(Π(X∆t)) have finite moments; see [8] for an example.
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3.2 Weak Shadowing

As we have discussed, numerical trajectories and exact trajectories started at the
same initial condition typically rapidly diverge. One ideathat has been proposed is
that for every numerical trajectory there is an exact trajectory starting at a different
initial condition that stays close to the numerical trajectory over long time intervals.
This idea is known as shadowing. An early version of shadowing is described by
Bowen [5] for Axiom A systems, though see [2], [4, p. 381], and[26, p. 38] for ear-
lier descriptions. A general result in this area is that if a system satisfies a uniform
hyperbolicity condition, then shadowing is possible over infinite time intervals [22].
This fact was used in [23] to study the long-time averages over trajectories com-
puted with a symplectic method under the assumption that thePoincaré section of
the flow is uniformly hyperbolic.

However, many systems that arise in applications are not uniformly hyperbolic [18,
Appendix B]. To the best of our knowledge, the only example ofa physically real-
izable Hamiltonian system that is uniformly hyperbolic on one of its energy levels
is due to Hunt and Mackey [18], and this system is uncharacteristic of systems that
arise in molecular dynamics. (Many billiard systems have been shown to be ergodic
and even mixing, but fail to be uniformly hyperbolic becausethe vector field is dis-
continuous at bounces [18, Appendix B].) For more realisticsystems shadowing
has been numerically demonstrated over long but finite time intervals [12], [16].
It remains to be seen whether shadowing over the long trajectories computed in
molecular dynamics is possible.

Let us specify formally what shadowing would consist of in our situation. Fixing a
time interval[0,T] we say thatY, an actual trajectory of the system,ε-shadows the
numerical trajectoryX∆t if

‖Y−X∆t‖∞ ≤ ε.

Assuming that it is possible to shadow every numerical trajectory in this way, let
S∆t be the map that takes the initial condition of the numerical trajectoryX∆t to the
initial condition of the exact trajectoryY that shadowsX∆t. This gives us our first
version of shadowing.

Shadowing Version 1. There existsS∆t : R
m → R

m such that if Y0 = S∆tX0 then

‖Y−X∆t‖∞ ≤ ε.

This version of shadowing is not sufficient for our purposes:it is not strong enough
to show something like (3.4). The difficulty is that even though each numerical
trajectory is close to some exact trajectory, it could be that the distribution ofY is
completely different from that ofX. This can result even if the distribution ofX0

andY0 are close because of the rapid divergence of trajectories ofthe system. This
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would in turn imply, sinceX∆t is close toY for everyX0, thatX∆t is not close toX
in distribution.

In order for the statistical properties ofY to be similar to that ofX, it is necessary
that the mapS∆t preserves the measure on the initial conditionX0. We are lead to
the following concept of shadowing for initial value problems with a probability
measure on the initial conditions:

Shadowing Version 2. Given that X0 has distributionν onR
m there is a mapS∆t

onR
m such thatS∆tX0 also has distributionν and

‖Y−X∆t‖∞ ≤ ε.

In practice we want to allow the possibility that shadowing is not possible for some
initial conditions. So to weaken Shadowing Version 2 slightly we conjecture:

Shadowing Version 3.Given that X0 has distributionν onR
m there is a mapS∆t

onR
m such thatS∆tX0 also has distributionν and

Pν(‖Y−X∆t‖∞ > ε) < ε.

With our application in mind there is an important way we can further weaken
Shadowing Version 3. As in the previous subsection, letΠ : R

m → R
k be a map

that takes configurations of the whole system and extracts lower dimensional infor-
mation. Then we could conjecture:

Shadowing Version 4.Given that X0 has distributionν onR
m there is a mapS∆t

onR
m such thatS∆tX0 also has distributionν and

Pν(‖Π(Y)−Π(X∆t)‖∞ > ε) < ε. (3.5)

This final form of shadowing is what we callweak shadowing.

In the context of molecular dynamics, establishing weak shadowing for some phys-
ically interestingΠ would be relevant if for all sufficiently small∆t there were con-
stantsA,B,C, p > 0 such that (3.5) held withε = A∆t p for all T = Bexp(−C/∆t).
Note that all versions of shadowing presented here hold immediately for smallε
if T is fixed and∆t is allowed to be arbitrarily small. However, this limit is not of
interest in molecular dynamics.

In order for weak shadowing to have the same explanatory power as Approxima-
tion in Distribution, we need to show that it also allows us tobound the difference
betweenEG(X) andEG(X∆t) for reasonable functionsG, as in (3.4). To see that
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it does, again define‖ · ‖BL as in the previous subsection and note that for any
G: (C[0,T])k → R, G is bounded by‖G‖BL andG has‖G‖BL as a Lipschitz con-
stant. In that case:

|EG(Π(X))−EG(Π(X∆t))|= |EG(Π(Y))−EG(Π(X∆t))|

≤ ‖G‖BLε +2‖G‖GLP(‖Π(Y)−Π(X∆t)‖ > ε)

< 3‖G‖BLε,

where we have used the fact thatX andY have the same distribution in the first
equality. This result is precisely (3.4) with a different constant.

4 Proof of Main Result

Our main result, Theorem 1 in Section 1, asserts that Approximation in Distribu-
tion (Equation (3.2)) and Weak Shadowing (Equation (3.5)) are equivalent. In this
section we first state a more general result, Theorem 3, and then show how The-
orem 1 follows from it. Then we present the proof of Theorem 3 which uses our
main technical result, Theorem 5.

We say that a measureν on a spaceS is non-atomicif ν({x}) = 0 for every point
x∈ S.

Theorem 3 Let Φ, Φ̂ : R
m → (C[0,T])k be measurable maps and letν be a non-

atomic measure onRm. Let X0 be a random vector inRk with distributionν. Then
the following are equivalent for allε > 0:
(A) Approximation in distribution:

ρ(Φ(X0),Φ̂(X0)) < ε.

(B) Weak Shadowing: There is a mapS : R
m → R

m such thatS X0 also has
distributionν and

P(‖Φ(S X0)− Φ̂(X0)‖∞ > ε) < ε.

Proof. To show that (A) implies (B) it is only necessary to apply Theorem 5 with
(S,d) = (T,e) = (Rm,‖ · ‖), X = Y = X0, (S̄, d̄) = ((C[0,T])k,‖ · ‖∞), Π1 = Φ1,
Π2 = Φ2. The theorem then gives a mapψ : R

m→ R
m such thatψX0 has the same

distribution asX0 and

P(‖Φ(ψ(X0)))− Φ̂(X0)‖∞ > ε) < ε.

To show that (B) implies (A), it is only necessary to see that (B) implies

ρ(Φ(S X0),Φ̂(X0)) < ε
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SinceS X0 is equal in distribution toX0 and equality in distribution is preserved un-
der measurable maps,Φ(S X0) is equal toΠ(X0) in distribution. Since the Prokhorov
metricρ only depends on distributions, we have thatρ(Φ(X0),Φ̂(X0)) < ε as re-
quired. �

Proof of Theorem 1.Let Φ be the map that takes initial conditionX0 to Π(X). Let
Φ̂ be the map that takesX0 to Π(X∆). Let ν be the distribution ofX0. Then the
theorem follows. �

Remark: Though we have motivated our result in terms ofΦ being the exact flow
of a system of differential equations and̂Φ being the trajectory generated by a
numerical method, the result can be much more broadly applied. In particular,Φ
andΦ̂ can be the flow maps of any two dynamical systems on the same state space.

It only remains to prove Theorem 5, which is the heart of Theorem 3 above. The-
orem 5 is similar to the Strassen-Dudley Theorem [9,30] which we state here for
reference:

Theorem 4 ([3, p. 73]) Let (S,d) be a separable metric space. If X and Y are
random elements of S withρ(X,Y) < β , then there are random elements̄X andȲ
of S defined on a common probability space such thatX̄ has the same distribution
as X,Ȳ has the same distribution as Y and

P(d(X̄,Ȳ) > β ) < β .

�

In contrast, our theorem is as follows. Recall that the distribution of X, a random
element ofS, is non-atomic whenP(X = x) = 0 for all x∈ S.

Theorem 5 Let X be a random element of the separable complete metric space
(S,d). Let Y be a random element of the separable complete metric space(T,e).
Suppose that the distributions of both X and Y are non-atomic. Let (S̄, d̄) be an-
other separable complete metric space, and letΠ1 : S→ S̄ andΠ2 : T → S̄ be mea-
surable maps. Letρ denote the Prokhorov metric on random elements of(S̄, d̄). If
ρ(Π1(X),Π2(Y)) < β then there is a measurable mapψ : S→ T such that̄Y = ψX
has the same distribution as Y and

P(d̄(Π1(X),Π2(Ȳ)) > β ) < β . (4.1)

Taking(S̄, d̄) = (S,d) = (T,e) andΠ1 andΠ2 to be the identity gives the following
simple corollary that is easier to compare with Theorem 4.

Corollary 6 Let (S,d) be a separable complete metric space. Let X and Y be ran-
dom elements of S with non-atomic distributions. Ifρ(X,Y) < β , then there is mea-
surable mapψ from (S,d) to itself such that̄Y = ψX has the same distribution as
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Y and
P(d(X,Ȳ) > β ) < β .

This result is stronger than Theorem 4 in that instead of being forced to have a
new probability space and define two new random variablesX̄ andȲ, we are able
to leaveX as it is and definēY to be a random variable on the same space that
X is defined on. This extra strength is necessary for us in orderto make the con-
nection with shadowing in Theorem 3. The extra cost is that weassume that the
metric spaces in whichX andY live are complete and, more importantly, that the
probability distributions ofX andY are non-atomic.

To see that the assumption of non-atomicity is essential in Corollary 6, and hence in
Theorem 5, consider the following example. For anyε ∈ (0,1/2) let Ω = {0,1} and
let F be all the subsets ofΩ. Let the probability measureP be defined byP(0) =
1/2− ε, P(1) = 1/2+ ε. Then(Ω,F ,P) is a probability space. Define random
variablesX andY by X(0) = 0,X(1) = 1,Y(0) = 1,Y(1) = 0. It is straightforward
to check thatρ(X,Y) = ε. However,Y is theonlyrandom variable on(Ω,F ,P) that
has the same distribution asY, andP(|X−Y|> 1/2) = 2ε. SoP(|X−Y| > ε) > ε,
and the result cannot hold.

Now we turn to the proof of Theorem 5. Many of the ideas used in the proof of the
Strassen-Dudley Theorem reappear here, including the use of the Marriage Lemma.
Before the proof we need several lemmas that allow us to construct measure iso-
morphisms between various spaces and also to divide spaces into many pieces of
equal measure.

Lemma 7 [25, p. 327] Let(S,d) be a complete separable metric space with Borel
σ -algebraB(S). Let µ be a non-atomic probability measure on(S,B(S)). Let
([0,1], B([0,1]), λ ) be the unit interval with Lebesgue measure defined on the
Borel sets. Then there is a subset S0 of S withµ(S0) = µ(S) and subset L0 of [0,1]
with λ (L0) = λ ([0,1]) such that there is a measurable invertibleψ : S0 → L0 such
that µ(ψ−1A) = λ (A) for all A ∈ B([0,1])∩L0. 2

Lemma 8 Let(S,d) and(T,e) be two complete separable metric spaces with Borel
σ -algebrasB(S) andB(T) respectively. LetµS andµT be non-atomic probability
measures on(S,B(S)) and(T,B(T)) respectively. Then there is a measurable map
ψ : S→ T such that

µS(ψ−1A) = µT(A)

for all A ∈ B(T).

Proof. Use Lemma 7 to construct subsets of full measureS0 andT0 in S andT
with measure preserving invertible mapsψ1 : S0 → L1 andψ2 : T0 → L2. Let S̃0 =
ψ−1

1 L1∩ψ−1
1 L2 and letψ equalψ−1

2 ψ1 restricted to this set. Let̃T0 be the image
of S0 underψ. Now extendψ in an arbitrary measurable way to all ofS. �

Lemma 9 Let (S,d) be a complete separable metric space with Borelσ -algebra
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B(S). Let µ be a non-atomic probability measure on(S,B). Given any subset
T ∈ B(S) with µ(T) = m≤ 1 and any finite set of real numbers mi , i = 1, . . . ,n
with ∑i mi = m there is a partition of T

T = ∪n
i=1Ti

with µ(Ti) = mi, i = 1, . . . ,n.

Proof. We begin by proving the result for the(S,d) being the unit interval[0,1]
andµ Lebesgue measure. Then we use the previous lemma to establish the general
case.

Let T be a Borel subset of[0,1] with Lebesgue measurem. Consider the function
σ : [0,1]→ [0,m] defined by

σ(x) = λ (T ∩ [0,x]).

Sinceλ is non-atomicσ is continuous. Let ¯m0 = 0 andm̄i = ∑i
j=1mj . Let Ti =

σ−1([m̄i−1,m̄i)) for 1≤ i ≤ n−1 andTn = σ−1([m̄n−1m̄n]). It is straightforward to
show that theTi satisfy the required conditions.

For the case of general(S,d), let ψ, S0, L0 be as given by Lemma 7. The subset
of [0,1] given byψ(T ∩S0) has measurem. By the previous case this can be parti-
tioned inton subsetsRi with λ (Ri) = mi that are all subsets ofL0. Let Ti = ψ−1(Ri)
for 1≤ i ≤ n−1 andTn = ψ−1(Rn)∪ (T \S0). It is straightforward to show thatTi

have the required properties. �

Lemma 10 Let(S,d) be a complete separable metric space with non-atomic prob-
ability measureµ on it. Let(S̄, d̄) be another complete separable metric space and
Π : S→ S̄ a measurable map. For anyε > 0 there is aδ < ε and a finite partition
of S

S= S∗∪ (∪n
k=1Sk),

such that
(i) µ(Sk) = δ for all k,
(ii) diam(Π(Sk)) < ε for all k,
(iii) µ(S∗) < ε.
Moreover, this is possible for all sufficiently smallδ .

Proof. Let xi , i ≥ 1 be a dense sequence of points inS̄. Let Bi ⊂ Sbe the inverse
image underΠ of the open ball of radiusε/2 aboutxi in S̄. For i ≥ 1 let

B̄i = Bi \∪
i−1
j=1B j .

Then theB̄i are disjoint, diam(Π(B̄i)) < ε and have unionS. Choosem such that

m

∑
i=1

µ(B̄i) > 1− ε/2.
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Now choose a sufficiently smallδ so thatmδ < ε/2. Using Corollary 9 divide each
B̄i into ki setsB̄i, j with µ(B̄i, j) = δ and one additional set̄B∗

i with µ(B̄∗
i ) < δ . Now

there are finitely many sets̄Bi, j all having measureδ . Call these setsSk. Condition
(i) is then satisfied. Each has diameter less thanε, since each is a subset of some
B̄i . So condition (ii) is satisfied. If we letS∗ = S\∪n

k=1Sk we have

µ(S∗)= µ

(

S\
m

∑
i=1

µ(B̄i)

)

+
m

∑
i=1

µ(B̄∗
i )

≤ ε/2+mδ = ε,

showing that condition (iii) is satisfied. �

Proof of Theorem 5.Let α = ρ(Π1(X),Π2(Y)) < β . Consider anyε > 0, which we
will fix later to obtain the required result.

Use Lemma 10 to construct finite partitions ofSandT,

S= S∗∪ (∪n
i=1Si), T = T∗∪ (∪n

i=1Ti),

such that
P(X ∈ S∗) < ε, P(Y ∈ T∗) < ε,

and for alli
diam(Π1(Si)) < ε, diam(Π2(Ti)) < ε,

P(X ∈ Si) = P(Y ∈ Ti) = δ < ε.

We can use the sameδ for bothSandT since Lemma 10 shows that for eachε the
construction is possible for all sufficiently smallδ .

We will construct a 1-1 mappingφ from the set{1, . . . ,n} to itself such that for
mosti we haved̄(Π1(Si),Π2(Tφ(i))) < α + ε. In other words, for mosti there will
be a point inΠ1(Si) and a point inΠ2(Tφ(i)) that are within distanceα + ε of each
other. Based onφ , we will then use Lemma 7 to construct a mapψ on S that takes
Si to Tφ(i) and such thatψX has the same distribution asY. We will construct the
mapφ with the help of the Marriage Lemma of König and Hall [9].

Lemma 11 (See [9, p. 406].) Let K denote a relation on{1, . . . ,n} such that for
all subsets A of{1, . . . ,n}

|{ j ∈ A: iK j for some i∈ A}| ≥ |A| (4.2)

where| · | denotes cardinality. Then there is a 1-1 mappingφ of {1, . . . ,n} to itself
such thatiKφ(i) for all i. 2

Ideally we would define the relationK on{1, . . . ,n} by saying thatiK j if d̄(Π1(Si),Π2(Tj))
< α + ε, and then using the Marriage Lemma to construct a mappingφ such that
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d̄(Π1(Si),Π2(Tφ(i))) < α + ε for all i. However, in general (4.2) does not hold for
this definition ofK, and such aφ does not exist.

Instead, we construct a mapφ such thatd̄(Π1(Si),Π2(Tφ(i))) < α +ε only for most
i, as follows. We append to{1, . . . ,n} k extra indicesn+ 1, . . . ,n+ k. Now for
i, j ∈ {1, . . . ,n+k} we say thatiK j if either

(1) d̄(Π1(Si),Π2(Tj)) < α + ε,
(2) i > n, or
(3) j > n.

Now let A be a subset of{1, . . . ,n+ k}. Either A contains at least one ofn+
1, . . . ,n+ k or it doesn’t. In the former case (4.2) holds immediately. Inthe latter
case, letSA = ∪i∈ASi . We have that

P(X ∈ SA) = |A|δ .

Let
B = {z∈ S: d̄(Π1(SA),Π2(z)) < α + ε},

so that

P(Y ∈ B) = P(d̄(Π1(SA),Π2(Y)) < α + ε)

≥P(d̄(Π1(SA),Π2(Y)) ≤ α)

= P(Π2(Y) ∈ Π1(SA)α)

Then sinceρ(Π1(X),Π2(Y)) = α,

P(Π1(X) ∈ Π1(SA)) ≤ P(Π2(Y) ∈ Π1(SA)α)+α.

This fact yields

P(Y ∈ B) ≥ P(Π1(X) ∈ Π1(SA))−α ≥ P(X ∈ SA)−α = |A|δ −α.

So the number of setsTj that have some portion inB is at least

(|A|δ −α −P(Y ∈ T∗))/δ ≥ |A|− (α + ε)/δ .

For all thesej ≤ n there is somei ∈ A such thatiK j .

When we include all thej > n, the total number ofj such thatiK j for somei ∈ A
is then at least|A|− (α +ε)/δ +k. So if we letk = ⌈(α +ε)/δ⌉, and then relation
K on{1, . . . ,n+k} satisfies the conditions of the Marriage Lemma.

This gives us that there is a 1-1 map̄φ between{1, . . . ,n+k} and itself such that
iKφ̄(i) for all i. We want to get a map 1-1 mapφ on{1, . . . ,n} so thatiKφ(i) for most
i. Consider what̄φ does to the set{1, . . . ,n}. At leastn− k elements get mapped
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back to{1, . . . ,n}. Let φ(i) = φ̄(i) for these elements. For all the others, just let
φ(i) be extended to be 1-1 on{1, . . . ,n}.

Now we have an invertible mapφ on{1, . . . ,n} such that forn−k of the elementsi

d̄(Π1(Si),Π2(Tφ(i))) < α + ε.

Using Lemma 8, for eachi there is a mapψi : Si → Tφ(i) such that for any measur-
able subsetC of Si

P(X ∈C) = P(Y ∈ ψi(C)).

Again use Lemma 8 to construct a mapψ∗ : S∗ → T∗ such thatP(X ∈C) = P(Y ∈
ψ∗(C)) for all measurableC ⊂ S∗. Now letψ : S→ T be defined by requiring that
ψ restricted toSi is ψi and thatψ restricted toS∗ is ψ∗. Then for any measurable
subsetC of S

P(X ∈C) = P(Y ∈ ψC).

This means that if we let̄Y = ψX, for any measurable subsetD of S

P(Ȳ ∈ D) = P(ψX ∈ D) = P(X ∈ ψ−1D) = P(Y ∈ ψψ−1D) = P(Y ∈ D)

as required.

It remains to show that̄Y satisfies equation (4.1). Now forn−k indicesi

d̄(Π1(Si),Π2(Tφ(i))) < α + ε.

If X ∈ Si thenȲ ∈ Tφ(i) and

d̄(Π1(X),Π2(Ȳ)) < α + ε +2ε,

sinceΠ1(Si) andΠ2(Tφ(i)) have diameters smaller thanε. So with probability at
leastδ (n−k) we have thatd̄(Π1(X),Π2(Ȳ)) < α +3ε. Since 1= nδ +P(X ∈ S∗)
andP(X ∈ S∗) < ε,

P(d̄(Π1(X),Π2(Ȳ))≥α +3ε) < kδ +ε = δ⌈(α +ε)/δ⌉+δ ≤α +ε +2δ < α +3ε.

Choosingε so thatα +3ε < β then gives our result. �

5 Discussion

Suppose we are considering a particular molecular dynamicssimulation over a long
time interval[0,T] started from random initial conditions. We wish to determine
what statistical features of its trajectories are computedreliably. A simple baseline
conjecture would be that all statistical features of the trajectories are computed ac-
curately. As we have detailed above, a quantitative versionof this conjecture would

22



be to say thatρ(X,X∆t) = ε for some smallε > 0. Then Theorem 1 states that with
probability greater than 1−ε, the numerical trajectory is shadowed by an exact tra-
jectory to within errorε. In this case, it should be possible to detect shadow trajec-
tories numerically using the techniques of [17], even though the shadows computed
will not necessarily have the correct measure on their initial conditions. Find such
shadow trajectories would be partial confirmation thatρ(X,X∆t) is small.

The other possibility is thatρ(X,X∆t) is not small. Suppose instead thatρ(X,X∆t) >
1/2. Now (3.3) implies thatβ (X,X∆t) > 1/6. This means that

‖EG(X)−EG(X∆t)‖ > 1/6 (5.1)

for someG: (C[0,T])m→ R with ‖G‖BL. Hence one way to confirm thatρ(X,X∆t)
is large is to find such aG such that we empirically observe (5.1).

In principle this approach is reasonable, but in practice the space of all functions
G: (C[0,T])m→ R with ‖G‖BL = 1 is huge for a realistic molecular dynamics sim-
ulation. In practice it may be that only for very unusual functionsG doEG(X) and
EG(X∆t) disagree significantly. One practical way to approach this is to start with
very low-dimensional systems. The lowest dimensional system that is a reason-
able model of molecular dynamics consists of two particles on a two-dimensional
periodic domain [31]. For example, one could study the system we considered in
Section 2 but with only two particles. Using the software available to compute exact
shadow trajectories of numerical trajectories [17] would show where shadowing is
not possible and could suggest what functionsG are likely candidates.

We have been considering the case whereΠ is the identity, for which it may be that
ρ(Π(X),Π(X∆t)) is large. The other direction to study these systems is to choose a
Π that is a very low dimensional function of the state of the system and then see if
it is possible to numerically perform weak shadowing with this choice. Currently
there have not been algorithms developed to do this, but it isa direction for future
work.

Finally, besides these numerical/experimental approaches there are more analytical
approaches. These would involve studying one of the model systems for molecu-
lar dynamics available that are analytically tractable. Both the systems studied in
[19] and [21] consist of single particle coupled to a bath of avery large or infinite
number of smaller particles. In both cases it is shown that the distribution of the
path of the large particle converges to a stochastic processthat can be simply de-
scribed through low-dimensional stochastic differentialequations. These situations
are clean enough that similar results for the numerical discretization of the Hamil-
tonian equation may be possible, thus establishing approximation in distribution
for the path of the distinguished particle. Our result then allows us to conclude that
weak shadowing is possible.

Our work allows the possibility of studying the reliabilitymolecular dynamics in a
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variety of contexts from one of two directions: either the statistical one through the
computing of histograms, or the dynamical one through the computing of shadow-
ing trajectories.
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