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Abstract

We present the results of a set of numerical experiments designed to investigate
the appropriateness of various integration schemes for molecular dynamics simu-
lations. In particular, we wish to identify which numerical methods, when applied
to an ergodic Hamiltonian system, sample the state-space in an unbiased manner.
We do this by describing two Hamiltonian system for which we can analytically
compute some of the important statistical features of its trajectories, and then ap-
plying various numerical integration schemes to them. We can then compare the
results from the numerical simulation against the exact results for the system and
see how closely they agree. The statistic we study is the empirical distribution of
particle velocity over long trajectories of the systems. We apply four methods: one
symplectic method (Stérmer-Verlet) and three energy-conserving step-and-project
methods. The symplectic method performs better on both test problems, accurately
computing empirical distributions for all step-lengths consistent with stability. De-
pending on the test system and the method, the step-and-project methods are either
no longer ergodic for any step length (thus giving the wrong empirical distribution)
or give the correct distribution only in the limit of step-size going to zero.

Key words: symplectic integrators, Hamiltonian systems, invariant measures,
long-time integration, step-and-project methods
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1 Introduction

Researchers in molecular dynamics use numerical simulations to extract infor-
mation about microscopic systems of particles. A typical model in such studies
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is a Hamiltonian system of ordinary differential equations. The equations are
numerically integrated over long time intervals and the trajectories are anal-
ysed to obtain information about the system. Given a single long trajectory, a
researcher may look at the fraction of time the system occupies different states,
the rate of transition between different states, or the correlation between dif-
ferent functions of the state of the system. We refer to these different data
as statistical information about the trajectory. The computed trajectories are
not accurate given the duration of the simulation and the step lengths used;
in general the true solution to the differential equations and the numerical
solution will diverge exponentially fast. Nevertheless, statistical information
is often believed to be accurately computed when appropriate methods are
used [1,5]. One goal of current research in numerical analysis is to understand
how— and for which methods— this is possible [12].

Standard numerical methods are inappropriate for long-time simulation of
Hamiltonian systems. They tend to either systematically add or systematically
remove energy from the system [11,7]. There are two alternatives commonly
proposed. One is the use of symplectic methods. This class of methods, which
includes the popular Stormer-Verlet or leapfrog method, has been shown to
have many desirable properties for the simulation of Hamiltonian systems.
They exactly conserve phase space volume, and conserve to very high accu-
racy a modified Hamiltonian energy function [2,10,7]. However, they do not
conserve the original Hamiltonian function. This motivates the other alterna-
tive for simulation of Hamiltonian systems: the step-and-project methods [7].
The strategy is to use a standard method but to project the solution after each
step onto the manifold of states of the correct energy. Thus any method can
be turned into an energy-conserving method, while the order of the original
method is preserved [14].

The symplectic Stormer-Verlet method is the leading choice for simulations in
molecular dynamics. In addition to being used for thousands of simulations
with good empirical results [1,5] there is much theoretical evidence that these
methods compute statistical properties accurately, despite not conserving en-
ergy exactly [10,15]. Thus it is generally believed that it is more important to
preserve the symplectic structure of the Hamiltonian flow than it is to exactly
preserve the Hamiltonian function— at least when computing statistical in-
formation about a system. However, there has been little direct evidence to
show that this is so. Our paper has two goals in this regard:

(1) To demonstrate that step-and-project methods can perform significantly
worse than the Stormer-Verlet method for the computation of statistical
information.

(2) To exhibit some of the pathologies possible when integrating Hamiltonian
systems with step-and-project methods.



We will achieve these goals by presenting the results of a set of numerical exper-
iments intended to illuminate these issues. We apply four numerical methods
to two simple Hamiltonian systems for which we can analytically determine
some of their statistical properties. This allows us to compare statistical fea-
tures computed with numerical methods with the actual statistics of the sys-
tem. Thus we are able to directly evaluate various methods’ performance as
integrators for molecular dynamics, and for other situations where statistical
features of Hamiltonian dynamics are important.

We focus on one particular statistical feature of the trajectories of our systems:
the empirical distribution of a function of the state-space of the system. Given
a stable system of ordinary differential equations and an initial condition, we
can compute a trajectory of arbitrary length. Given a function of state-space,
for each finite trajectory we can look at the distribution of the values the
function takes along the trajectory. One way to visualize this information is
as a histogram for the value of the function. For fixed initial conditions we
can look at the limit of this distribution as the length of the trajectory goes
to infinity (if it exists). We define this to be the empirical distribution for the
function for this initial condition. We say that the system is ergodic if the
empirical distribution does not depend on the initial condition. In this case
we refer to this limit as the empirical distribution of the system.

In order to assess various methods’ ability to compute empirical measures
we have chosen Hamiltonian systems which are nearly ergodic and for which
we can analytically determine the empirical measure of a particular function:
specifically the velocity of a single particle in the system. In Section 2 we
describe the two Hamiltonian systems we consider. The first consists of two
particles interacting on a two-dimensional domain with reflecting walls. The
second consists of three particles interacting on a two-dimensional domain with
periodic boundaries. Whenever two particles are far from each other and any
bounding walls, there is no force on the particles. This allows us to analytically
determine the empirical measure of velocities in these states. We describe the
invariant measure in Section 3.

We have deliberately not chosen for our study realistic Hamiltonian systems
from the point of view of molecular dynamics. The main reason is that our
comparison of methods consists of studying the difference of the analytically
known empirical measure of the original system with that of the numerically
computed trajectories. For realistic molecular systems exact invariant mea-
sures (on a particular energy level-set) are not available. Moreover, we suspect
that these effects will be much less noticeable for systems of many interacting
particles. (Though not always; see [16] for a one-dimensional example of a
many particle system where projection methods destroy the systems statis-
tics.) Finally, we believe that there is an advantage to presenting as simple
an example as possible in order that the fundamental difficulties are easily



understandable.

In Section 4 we describe the numerical methods which we consider and in Sec-
tion 5 we present the numerical results of their application to the test prob-
lems. We consider one symplectic method (Stormer-Verlet) and three step-
and-project methods. The Stormer-Verlet method is a second-order method
that uses one force evaluation per step. Since we will see that it has nearly
perfect properties with respect to our tests, we do not consider any higher or-
der symplectic methods. The three step-and-project methods we consider are
the projected versions of forward Euler, backward Euler, and the 4th-order
Runge-Kutta method RK4. We have chosen forward Euler since it is explicit,
like Stormer-Verlet requires only one force evaluation per step. We include
backward Euler to show that the poor behaviour of forward Euler is not due
to it somehow being unstable. Finally, we study RK4 to show that some of the
problems associated with the Euler methods persist for higher order methods.
There are, of course, other numerical methods that preserve the Hamiltonian
exactly [7,14], but we have not considered them here.

We conclude in Section 6 with a discussion of how the results of our exper-
iments tie in with the current theoretical knowledge. We also briefly discuss
the relevance of our experiments to practical molecular dynamics simulations.

2 Model Systems

We consider two model Hamiltonian systems in our investigation. Both are
systems of circular particles interacting on two-dimensional domains. The first
system consists of two discs in a two-dimensional box. The dimensions of the
box are 1-by-1 units, and the radius of the discs are both r = 0.1 units. When
the discs do not overlap the walls of the box or each other, no force acts upon
them and they move at constant velocity. However, when they overlap each
other or the walls, there is a restoring force that pushes them apart. The
strength of the force varies linearly with the amount of overlap of the two
objects.

To formally specify the first model system we let ¢; € R? denote the position
of the ith particle, i = 1,2. Likewise, p; € R? denotes the momentum of the
1th particle. We let ¢, p denote the vectors of length 4 that hold the states of
both particles. The Hamiltonian for the first system is

H(q,p) = %lel2 +U(q)



with equations of motion

dqg OH dp  OH
F7R ST i VU(q).

The potential U is given by

U(q> - Uinter(qla q2) + Z Uwalls(Qi)-

i=1,2

The function Uiy, gives the potential energy of the interaction between the
two balls. If d;5 is the distance between the centres of the two balls then

1
Uinter(Qla q2) = 5]{32(27’ - dl2)3_' (1)

Here (z) denotes the maximum of 0 and x. The value Uyans(¢;) is the energy
of interaction of particle ¢ with the walls. In particular

Usans(¢:) = %’f2 Y g — D3+ (—ai)3].

j=1,2
We always choose the initial condition to have energy H(qo,po) = 1/2.

The second model system is also a two-dimensional system but now consists of
three discs interacting on a square periodic domain T?. By a periodic domain,
we mean that if a particle exits the square on one side, it re-enters at the
opposite side with the same velocity. The size of the domain and the particles
remain the same, and the particles interact through the same potential. The
positions ¢;, and momenta p;, i = 1,2,3 (and ¢ and p) are defined analogously.
The Hamiltonian of the system is

1
H(qvp) = §||pl|2 + Z Uinter(qmaQH)a

m<n

with Upyer defined as in (1), with d,,, the distance (in the minimal geodesic
sense) between the centres discs m and n on the periodic domain.

Besides the total energy, the second model system has two additional conserved
quantities, the total momentum in the x direction and the total momentum
in the y direction. Moreover, if we start with zero total momentum, the sum
of the xz-coordinates of the discs is always conserved, as is the sum of the y-
coordinates. We always start our system with a total energy of 1/2, with zero
total momentum and with the sums of the z- and y-coordinates set both set
to zero. Thus the state-space for our system is the set of all (¢, p) € T?*3 x T
such that H(q,p) =1 and

G+@+a=0, pi+p+p;3=0. (2)



For both systems k is a parameter that controls how stiff the interaction
between the particles is. In both cases as k — oo their flows approach those of
a billiard system (that is, a Hamiltonian system with instantaneous collisions.)
In each case the limiting billiard system has been shown to be ergodic. (See [13,
p.59] for the two disc in a box, and [8] for three discs on a periodic domain.) It
is unlikely that either of the model systems is ergodic on any of its energy level
surfaces for finite &k [9,3]. However, we conjecture that for large k the systems
are indistinguishable from being ergodic up to the accuracy of our calculations
[15]. This is borne out by numerical simulations. Hence, from now on in this
paper we will use the term empirically ergodic to denote this approximate,
empirical notion of ergodicity.

3 Empirical Distributions

For both systems we study the empirical distribution of the velocity of one of
the particles. Specifically, we shall examine

P11
Vi llpall?

i.e. the velocity in the z direction of the first particle, normalized by the
total kinetic energy of the system. (We perform this normalization in order to
minimize the effect of numerical energy drift, which is a separate issue.) When
the total energy of the system is conserved, as it is for the original system
and with the step-and-project methods, the normalization is irrelevant and
v = p1,1. In all cases we shall only sample the variable v when no particles or
walls are interacting. These choices mean that the empirical distributions of

the systems are analytically determinable and that that they independent of
k.

V=

For the first system the full state-space is the set of all states with total energy
1/2. When we restrict to states where no objects are interacting we are left
with the product of a configuration space (g variables) and a momentum space
which is just the unit sphere in R*. This allows us to exactly sample v from
the true empirical distribution in the following manner.

Let n;, i = 1,...,4 be independent standard Gaussian random variables.
Let v = 771/ Zi:l,...A 7]1'2 .

The empirical distribution of the random variable generated this way is shown
by the thick grey line in Figure 1.

For the second system, restricting to states without interaction means that
again the state-space factors into configuration and momentum spaces. The



momentum space consists of 6-vectors of unit length such that the momentum
constraint p; + ps + p3 = 0 is satisfied. We can sample directly from this
distribution by the following procedure.

Let 7;, i = 1,...,6 be independent standard Gaussian random variables.
Let n; = 0 — (Th + 72 + 173)/3, for i = 1,2, 3.
Let n; =1 — (s + 175 + 76) /3, for i = 4,5, 6.

Let v =1,/ die1,..6 77z'2

The empirical distribution of v that is sampled by this procedure is shown by
the thick grey line in Figure 3.

4 Numerical Methods

We apply four numerical methods to our two test systems: the Stormer-Verlet
method, and each of forward Euler, backward Euler, and RK4 projected to
conserve energy.

Applying the Stormer-Verlet method to our systems gives

dn+1/2 =Gn + Atpn/27
Pn+1=Dn — AtVU(Qn+1/2)7
Gn = Gnt1/2 + Atpry1 /2.

It is a symplectic method [11], and as a consequence it conserves phase space
volume.

The three step-and-project methods are derived by projecting onto the cor-
rect energy manifold after a step of a standard method. Starting from the
state (qn, prn) we apply the standard method to get (., p.). The forward Euler
method gives

G = Gn + Atpn,  pe =pn — AtVU(qy,),

and the backward Euler method is the solution to

G = Gn + Alps,  pw = pn — AtVU(qs).

See [6] for the description of RK4. Then, for each, we let

(@1 Poid)” =g p]" +tsT (3)



where s is a vector search direction and ¢ is a scalar chosen so that

H(qn+l>pn+l) = H(Qmpn)' (4)

We determine ¢ with a Newton-Raphson iteration.

For each projected method it is necessary to choose a projection direction s.
The standard choice: s = VH(q.,p.) = [VU(q.) p«]T is unsuitable because
it scales badly in the k& — oo limit. Instead we choose s = [VU(q.)/k* p.]*
for all our numerical experiments in order to give the projected methods their
best chance of success.

There is one final feature of our experiments we need to describe. For non-
smooth Hamiltonian systems, the energy error of symplectic methods can be
quite severe over long time intervals [4]. If left unchecked this can eventually
lead to explosively unstable trajectories. This occurs in our experiments with
Stormer-Verlet with the step-sizes we use. Accordingly, we project the numer-
ically computed solution onto the set of states with the correct energy after
every 1000 Stormer-Verlet steps. We use the same projection technique as for
the step-and-project methods. For smoother Hamiltonian systems this would
not be necessary and we do not recommend the practice in general.

5 Results

For each simulation run we choose a stiffness k, a time-step At, and a time
interval T'. For sufficiently large k, if £ was doubled, the same histograms were
observed if instead At were halved. That is, the important parameter in the
simulations was kAt. Accordingly, we fixed &k to be 100 and varied At. For each
situation we ran with several different randomly selected initial conditions.

First we will summarize the results, and then in two subsections we will pro-
vide more details together with plots of computed empirical distributions. For
both systems, the Stormer-Verlet method yields the correct empirical distri-
bution for v with no detectable truncation error. The only restriction is that
the step-size be small enough so that the energy drift does not cause too much
instability. The other methods perform less well for both systems. For the first
model system (two balls in a box) the dynamics of projected forward Euler
and projected backward Euler are no longer empirically ergodic. Projected
forward Euler yields two different, wrong histograms for v depending on the
initial conditions. Projected backward Euler yields only one histogram, but it
is completely inaccurate. For both methods, the poor behaviour remains no
matter how small At is. The projected RK4 method does better. Its trajec-
tories appear to be empirically ergodic. However, for large At the empirical
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Fig. 1. (Left) Empirical distribution of v for first model system. Shown are the exact
solution together with results computed by the Stormer-Verlet algorithm for three
different At. (Right) Same as left, but with the projected RK4 method.

measure computed is far from the exact answer. As At goes to zero, the em-
pirical measure converges to the answer rapidly. For the second model system
(three balls on a periodic domain) the projected methods all perform better,
but not as well as Stormer-Verlet. They appear to be empirically ergodic, and
as At goes to zero, the computed empirical distribution converges to the cor-
rect empirical distribution. However, they do not exhibit the highly accurate
behaviour of Stormer-Verlet.

5.1 First Model System: Two Balls in a Box

Figure 1 (left) shows results of the simulation with the Stérmer-Verlet method.
The duration of simulations was T = 0.5 x 10° time units. We chose At to
be 0.05,0.025,0.0125. Each histogram generated was insensitive to the initial
conditions chosen, so we conclude that the method preserves empirical ergod-
icity. The histograms are nearly identical to each other, and to the analytically
computed histogram.

Figure 1 (right) shows the results of the simulation with the projected RK4
method. The duration of simulations was 7' = 0.2 x 107 time units. We chose
At to be 0.2,0.1,0.05. This meant that the number of force evaluations per
time interval was the same as for the corresponding simulation for the Stormer-
Verlet method. In all cases the histogram generated did not depend on the
initial condition and so empirical ergodicity appeared to be preserved. For the
same number of force evaluations that gave an apparently perfect result for the
symplectic method, projected RK4 gives an empirical distribution with spuri-
ous peaks and troughs. With approximately 4 times as many force evaluations
it gives a reasonable approximation to the empirical measure.
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Fig. 2. Schematic diagram showing limit cycles for the first model system numeri-
cally integrated with projected forward Euler (left) and projected backward Euler
(right).

On the other hand, the results for the two step-and-project methods are dis-
astrous. We first consider the forward Euler with projection. In this case the
limiting histogram generated depended on the initial condition of the simula-
tion. There were two possibilities. Either the bin containing v = 0 contained all
the mass, or else the bins at —1 and 1 each had half the mass. These histograms
were observed because in each case the computed trajectory had converged to
a stable periodic cycle. One disc was completely motionless, whereas the other
was moving back and forth vertically or horizontally between two opposing
walls. Figure 2 (left) shows schematically one such limit cycle. We stress that
this result did not go away with reduced At. However, the smaller At was,
the longer it took to converge to one of these cycles.

The results for projected backward Euler were similar, though with a different
attractive limit cycle. In this case both of the particles eventually moved about
the box in a square orbit, not interacting with each other, as shown in Figure 2
(right). This cycle is not unique since the particles may move either clock-
wise or counter-clock-wise, depending on the initial condition. The system is
therefore not empirically ergodic. However, since we only look at the statistics
of v and not other variables, only one limiting histogram is produced: one with
two equal delta functions at +1/2. The same histogram was generated for all
At > 0.

To understand the poor performance of the two first-order step-and-project
methods, we must consider how these methods handle collisions. Without the
energy projection, each method has a tendency to bias the energy of a colliding
particle during a collision. When a collision between a particle and a wall is
simulated by the forward Euler method, energy is added unphysically to the
colliding particle. When the energy projection is performed the extra energy is
removed from the system, but it is now removed from both particles. The net
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Fig. 3. (Left) Empirical distribution of v for second model system. Shown are the
exact solution together with results computed by the Stormer-Verlet algorithm for
three different At. (Right) Same as left but with projected RK4 method.

result is that the particle that is colliding gains some energy while the other
particle loses energy. Since the more energy a particle has, the more often it
collides with the wall, and the more energy it gains in turn, eventually all the
energy is in one particle and the other is motionless, as in Figure 2(left). A
similar phenomenon occurs for the project backward Euler method where in
each collision with a wall the colliding particles loses some energy while the
other particle gains energy. As a consequence the particles are driven to have
the same energy and collide with the walls at the same rate. The net result
is that trajectories such as that shown in Figure 2(right) are stable with this
method.

5.2 Second Model System: Three Balls on a Periodic Domain

We applied the Stormer-Verlet method to the second model system over a
time interval of length 7" = 0.5 x 10° time units, with step-lengths At =
0.05,0.025,0.0125. The generated histograms do not depend on the initial
condition, so empirical ergodicity is preserved. As Figure 3 (left) shows, the
histograms for different step-lengths were indistinguishable from each other
and from the exact solution.

The projected RK4 method was applied over a time interval of length T =
0.2 x 10° time units, with step-lengths At = 0.2, 0.1, 0.05, again corresponding
the the same number of force evaluations per time interval as the simulations
with Stormer-Verlet. The generated histograms did not depend on initial con-
dition, so we assume that empirical ergodicity is preserved. The situation as
shown in Figure 3 is qualitatively similar to that for the first model system,
though the approximation is better for this system.

11
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Fig. 4. Empirical distribution of v for second model system. (Left) The exact solution
together with results computed by the projected forward Euler method for three
different At. (Right) Same as left but with the projected backward Euler method.

The projected forward Euler method was applied with step-lengths At =
0.1,0.05,0.025 over T' = 10 time units. The projected backward Euler method
was applied with step-lengths At = 0.05,0.025,0.0125 over T' = 10° time units.
(For both methods, the largest step-length we used was determined by how
large a step could be taken before the Newton-Raphson iteration failed to
converge for some step.) Both methods generated histograms that were inde-
pendent of the initial data, so empirical ergodicity appeared to be preserved.
Figure 4 shows the histograms generated by applying the two first-order step-
and-project methods to the system. Like the projected RK4 method, the his-
tograms generated do depend on At. As At — 0 the histograms appear con-
verge to the correct one, but for any finite At the histogram is likely incorrect.

6 Discussion

There are three conditions which together are sufficient for a numerical in-
tegration method to exactly compute empirical distributions of functions for
ergodic Hamiltonian systems [15]:

(1) The numerical method is ergodic when applied to the system.
(2) The numerical method conserves energy.
(3) The numerical method preserves phase space volume.

If any of these conditions fail to hold, we expect some error between the
empirical distribution computed with the method and the exact empirical
distribution.

Symplectic methods satisfy Condition 3. They do not typically satisfy Condi-
tion 2; the Hamiltonian energy H is not conserved. Rather, symplectic meth-
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ods very nearly conserves a shadow Hamiltonian H which is O(At") close
to H, where r is the order of the method [2,10,7]. As a consequence, we ex-
pect errors in empirical distributions of order At". In our experiments with
Stormer-Verlet, we do not observe any detectable error at all. The reason for
this is that we have deliberately chosen our test systems, the statistic v, and
our method of sampling so that this error is zero.

Our experiments suggest that the Stormer-Verlet method applied to our sys-
tems satisfy Condition 1. In [15] it is shown that a symplectic, approximately
energy-conserving method will be empirically ergodic for small enough At.
What we observe here for Stormer-Verlet shows that this empirical ergodicity
can be so good that it is indistinguishable from actual ergodicity. Moreover, ex-
tremely small step lengths are not required for this to hold. This phenomenon
still requires an explanation.

If we have an exactly energy-conserving method Condition 2 is immediately
satisfied, but Condition 3 will very likely not be [17]. At first, one might
conjecture that this will be the only problem, and that Condition 1 will not be
grossly violated for small step lengths, since the method is convergent. This
is what we observe for the second model system with the step-and-project
methods. However, the first model system refutes this conjecture. If a method
does not preserve phase-space volume, then it is possible for the discretized
system to have limit cycles, and thus not be even empirically ergodic in any
sense, for any positive At.

On a practical note, our experiments add support to the accepted wisdom
that symplectic methods are far more appropriate for molecular dynamics
than energy-conserving methods. The symplectic Stormer-Verlet method was
substantially more accurate than its competitors using the same number of
force evaluations per time interval and it was the cheapest of the three by far.
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