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1 Introduction

The first example of a convergent trigonometric series that cannot be ex-
pressed in Fourier form is due to Fatou. The series

∞
∑

n=1

sin nx

log(n + 1)
(1)

converges everywhere to a function that is not Lebesgue, or even Perron,
integrable. It follows that the series (1) cannot be represented in Fourier
form using the Lebesgue or Perron integrals. In fact this example is part of
a whole class of examples as Denjoy [22, pp. 42–44] points out: if bn ց 0
and

∑∞
n=1 bn/n = +∞ then the sum of the everywhere convergent series

∑∞
n=1 bn sin nx is not Perron integrable.
The problem, suggested by these examples, of defining an integral so that

the sum function f(x) of the convergent or summable trigonometric series

a0/2 +
∞
∑

n=1

(an cos nx + bn sin nx)(2)

is integrable and so that the coefficients, an and bn, can be written as Fourier
coefficients of the function f has received considerable attention in the lit-
erature (cf. [10], [11], [21], [22], [26], [32], [34], [37], [44] and [45].) For an
excellent survey of the literature prior to 1955 see [27]; [28] is also useful. (In
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some of the earlier works ([10] and [45]) an additional condition on the series
conjugate to (2) is imposed.) In addition a secondary literature has evolved
devoted to the study of the properties of and the interrelations between the
several integrals which have been constructed (for example [3], [4], [5], [6],
[7], [8], [12], [13], [14], [15], [16], [17], [18], [19], [23], [29], [30], [31], [36], [38],
[39], [40], [42] and [43]).

Excepting for [37] and [32] (which use the approximate symmetric deriva-
tive) and [44] (which uses an Abel derivative) all of these integrals are inti-
mately related to the second order symmetric derivative and to the Riemann
method of summation (see [46, Vol. I, p. 319]). The solutions of Denjoy [22]
and James [26] use explicitly this derivative and introduce a second order in-
tegral that recaptures a function from its second symmetric derivative. The
solutions of Marcinkiewicz and Zygmund [34] and of Burkill [11] use first
order derivatives (the symmetric Borel derivative in the former and the sym-
metric Cesàro derivative in the latter) and introduce first order integrals as
a result; even so the connection with the second order symmetric derivative
is immediate and these integrals can be interpreted as a.e. derivatives of the
second order integrals of Denjoy and James.

In this article we shall present an account of the Burkill and James in-
tegrals from a new point of view. We introduce the notion of symmetric
variation and use its properties to define an integral. Some of the technical
difficulties that arise in the James integral are simplified by using a device due
to Mař́ık [35] that allows a treatment of the second order integrals as a first
order integral. The integral we introduce (in Section 7) is exactly Mař́ık’s
version of the James integral but developed directly from the symmetric vari-
ation rather than from the standard Perron major/minor function method.
This treatment then allows the Burkill (SCP)–integral to be accommodated
quite naturally and easily (Section 10).

The applications of this integral to trigonometric series in this article
are all achieved by using an integration by parts. In the standard solutions
mentioned above the usual proofs involve instead the formal multiplication
of trigonometric series, which is a well known technique in this subject ([46,
Vol. I, pp. 330–344]). Burkill on the contrary also used an integration by
parts argument but it is flawed by the fact that the proof in [11] is incorrect.
As later pointed out by H. Burkill [7] the main result in [11] still stands
by reverting to the formal multiplication argument. Mař́ık [35] long ago
provided an integration by parts formula for his version of the James integral.
Bullen and Mukhopadyay [6] proved a limited version for the (SCP)–integral.
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Finally, thirty years after the appearance of [11], Skljarenko [39] supplied a
proof of the integration by parts formula for Burkill’s (SCP)–intregral; note
that the proof also places this in the setting of the James integral.

We have incorporated some of these ideas here in Sections 3, 11 and 12.
Mař́ık’s methods are reproduced and applied in this setting (his notes have
not been published to date). They allow, too, a simplification of the proof of
the Skljarenko theorem for the (SCP)–integral (see Section 12). The main
application to trigonometric series is presented in Section 13; this is Mař́ık’s
theorem giving conditions under which a series is the Fourier series of its Rie-
mann sum. As a special case, of course, this returns us to the representation
problem with which our discussion began. Section 14 concludes with some
classical theorems on trigonometric series that follow as easy corollaries of
this work.

2 Some preliminary definitions

The main setting for this article is the real line. All functions are real-
valued. The Lebesgue outer measure of a set E of real numbers is denoted as
|E|. Almost everywhere (a.e.) normally refers to Lebesgue measure; nearly
everywhere (n.e.) means excepting a countable set.

The expression

∆2
sF (x, h) = F (x + h) + F (x − h) − 2F (x)(3)

is called the second order symmetric difference of F at x. Most of our con-
cerns in this article arise from this difference. We recall some of the termi-
nology that has evolved. A function F is said to be smooth at a point x
if ∆2

sF (x, h) = o(h) as h → 0+. For an arbitrary function F the extreme
second order symmetric derivates are defined as

D2 F (x) = lim sup
h→0+

∆2
sF (x, h)

h2
and D2 f(x) = lim inf

h→0+

∆2
sF (x, h)

h2
.

If these are equal and are finite we write their common value as D2 F (x)
which is called the second order symmetric derivative.

In discussions of integrals the increment of a function F on an interval
[a, b] is frequently employed. For symmetric integrals it is often more conve-
nient to employ the expression

λF (a, b) = lim
h→0+

{F (b − h) − F (a + h)}(4)
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if it exists. This expression has an extra advantage of being symmetric itself
(with the a = b) and this can be useful.

Since this expression will play an occasional role in the sequel there are
several observations that can be made. The proofs are immediate. Note first
that if F is continuous on the right at a and on the left at b then

λF (a, b) = F (b) − F (a).(5)

If F is 2π–periodic and symmetrically continuous, i.e. if

lim
h→0+

{F (x + h) − F (x − h)} = 0

at each point x, then for any value of a

λF (a, a + 2π) = 0.(6)

If a < b < c, if F is symmetrically continuous at b and if both expressions
λF (a, b) and λF (b, c) exist then

λF (a, c) = λF (a, b) + λF (b, c).(7)

If G is integrable (in the Lebesgue or Denjoy-Perron senses) with an
indefinite integral F then λG(a, b) can be directly obtained from F . For an
arbitrary function F defined on an interval [a, b] we shall write

ΛF (a, b) = lim
h→0+

F (a) − F (a + h) − F (b − h) + F (b)

h
.(8)

If F (x) =
∫ x
a G(t) dt then

F (a) − F (a + h) − F (b − h) + F (b)

h
− λG(a, b)

= h−1
∫ h

0
{G(b − t) − G(a + t) − λG(a, b)} dt

and if λG(a, b) exists the integrand tends to zero. Thus we have proved that
if F =

∫

G and λG(a, b) exists then

λG(a, b) = ΛF (a, b).(9)

Like (4) the expression (8) has an extra advantage of being symmetric
itself (with a = b the numerator is a second symmetric difference). It is
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ΛF (a, b) we shall use more frequently than λG(a, b) and our attention now
turns to a development of its more elementary properties.

The expression is additive in the sense that

ΛF+G(a, b) = ΛF (a, b) + ΛG(a, b)(10)

if both exist. If F is linear then ΛF (a, b) = 0; moreover in that case it follows
from (10) that ΛF+G = ΛG for any other function G. If F −G is linear and
either of the two expressions exist then ΛF (a, b) = ΛG(a, b). If the one-sided
derivatives F ′

+(a) and F ′
−(b) exist for a function F then

ΛF (a, b) = F ′
−(b) − F ′

+(a).(11)

In particular then, if F is convex on an open interval that contains the
points a and b, the expression ΛF (a, b) must exist; we shall use this fact in
Definition 6 below. If F is smooth and 2π–periodic then for any value of a

ΛF (a, a + 2π) = 0.(12)

If a < b < c, if F is smooth at b and both expressions ΛF (a, b) and
ΛF (b, c) exist then

ΛF (a, c) = ΛF (a, b) + ΛF (b, c).(13)

Finally here is one last computation (from [35, (112), p. 65]) for the
expression (8). Suppose that F and G are continuous on an interval [a, b],
that ΛF (a, b) exists, that G(a) = G(b) and that both derivatives G′

−(b) and
G′

+(a) exist. Then

ΛFG(a, b) = G(a)ΛF (a, b) +
(

F (b)G′
−(b) − F (a)G′

+(a)
)

.(14)

To check (14) write G(a) = G(b) = β,

L(x) = F (a) + (F (b) − F (a)(x − a)/(b − a),

F1 = F − L, G1 = G − β. Then ΛF1G1
(a, b) = 0, ΛβF1

(a, b) = βΛF (a, b) and

ΛLG(a, b) =
(

F (b)G′
−(b) − F (a)G′

+(a)
)

.

Finally then (14) follows from

ΛFG(a, b) = ΛF1G1
(a, b) + ΛβF1

(a, b) + ΛLG(a, b).
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3 Mař́ık’s symmetric difference

Our study will require some attention to a symmetric difference introduced
by Mař́ık [35]. This difference arises from the observation that if an integrable
function F has a symmetric derivative at a point then the indefinite integral
of F has a second order symmetric derivative at that point and the values
are the same. The Mař́ık difference is a measure of this fact and will prove
useful in a discussion of the integration by parts formula in Section 11. This
material is all due to Mař́ık [35] and reproduced here as it has not been
published.

1 DEFINITION. Let F be integrable and defined everywhere in a neigh-
bourhood of a point x. Then, for h > 0, we write

M2
sF (x, h) =

F (x + h) − F (x − h)

2h
− 1

h2

∫ h

0
{F (x + t) − F (x − t)} dt

whenever this makes sense.

LEMMA 2 Given any x and a positive η, suppose that |F ′′(τ)| < w for all
τ ∈ (x − η, x + η). Then |M2

sF (x, h)| ≤ hw/6 for all 0 < h < η.

PROOF. (Reproduced from [35, (110), p .64].) Write g(t) = F (x+t)−F (x−
t) and G(t) = tg(t) − 2

∫ t
0 g(s) ds (0 < t < η). The following computations

are immediate: G′(t) = tg′(t) − g(t), G′′(t) = tg′′(t), |G′′(t)| ≤ 2tw, G(0) =
G′(0) = 0, |G′(t)| ≤ wt2 and |G(t)| ≤ wt3/3. From these

|M2
sF (x, h)| =

1

2h2
|G(h)| ≤ hw

6

for all 0 < h < η now follows.

LEMMA 3 Suppose that F has a finite symmetric derivative at a point x.
Then M2

sF (x, h) → 0 as h → 0+.

PROOF. (Reproduced from [35, (111), p .65].) Let α denote the symmetric
derivative of F at x. Then F (x+t)−F (x−t) = 2αt+F1(t) where F1(t) = o(t)
as t → 0+. Then

M2
sF (x, h) = α +

F1(h)

2h
− 1

h2

∫ h

0
(2αt + F1(t)) dt
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=
F1(h)

2h
− 1

h2

∫ h

0
F1(t) dt

and this is evidently tending to zero as h → 0+.

LEMMA 4 Let α, β and γ be nonnegative real numbers. Let {αn} and {ξn}
be sequences of real numbers with |αn| ≤ α. Define

F (x) =
∞
∑

n=1

αn

n2
f(ξn + nx)

where f is a real function satisfying |f(x)| ≤ β and |f ′′(x)| ≤ γ for all x.
Then |M2

sF (x, h)| ≤ 2α
√

βγ.

PROOF. (Reproduced from [35, (120), p .70].) We may assume that each
of α, β and γ is positive. Write gn(t) = f(ξn + nx + t) − f(ξn + nx − t) and
Kn(x) = f(ξn + x). If we define

Bn(t) =
gn(nt)

2t
− 1

t2

∫ t

0
gn(nτ) dτ

then we can easily establish the identity

M2
sF (x, h) =

∞
∑

n=1

αn

n2
Bn(h)(15)

that will allow us to establish the estimate required in the lemma.
Since |f | ≤ β, |gn| ≤ 2β and hence |Bn(h)| ≤ 3βh−1. We shall need as

well the estimate |Bn(h)| ≤ n2hγ/6. To obtain this we write

Bn(h) = n

(

gn(nh)

2nh
− 1

n2h2

∫ nh

0
gn(τ) dτ

)

= nM2
sKn(nx, nh).

Now |f ′′| ≤ γ and so also |K ′′
n| ≤ γ. Thus, using Lemma 2, we have

|Bn(h)| = n |M2
sKn(nx, nh)| ≤ n2hγ

6

as we wished to prove.
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Define t0 = 3
√

β/γ (i.e. so that γ/3 = 3β/t20) and define the function

φ(t) =

{

γ/3 for 0 < t < t0,
3β/t2 for t0 ≤ t.

Note that φ is continuous and nonincreasing and that, because of the in-
equalities |Bn(h)| ≤ 3βh−1 and |Bn(h)| ≤ n2hγ/6, we have

|Bn(h)| ≤ hn2φ(nh).

Combining this with (15) we obtain

|M2
sF (x, h)| ≤ α

∞
∑

n=1

hφ(nh).

To get an upper estimate on this sum note that

∫ nh

(n−1)h
φ(τ) dτ ≥ hφ(nh)

and so
∞
∑

n=1

hφ(nh) ≤
∫ ∞

0
φ(τ) dτ =

γt0
3

+
3β

t0
=

2γt0
3

= 2
√

βγ.

So finally we have |M2
sF (x, h)| ≤ 2α

√
βγ as required.

THEOREM 5 Let {an} and {bn} be bounded sequences of real numbers
and suppose that

F (x) =
∞
∑

n=1

1

n2
{an cos nx + bn sin nx} .

Then F is continuous, 2π–periodic and

|M2
sF (x, h)| ≤ 2 sup

n

√

a2
n + b2

n

for all x and all h > 0.

PROOF. (Reproduced from [35, (121),p .71].) Write αn =
√

a2
n + b2

n, f(x) =

sin x and an cos nx + bn sin nx = αn sin(ξn + nx). The theorem now follows
directly from Lemma 4.
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4 Basic definitions

The relation D2 F (x) = f(x) for x in a set E can be written as the require-
ment that for every ǫ > 0 there is a δ(x) > 0 so that

∣

∣

∣F (x + t) + F (x − t) − 2F (x) − f(x)t2
∣

∣

∣ < ǫt2

for x ∈ E and 0 < t < δ(x). This observation taken in concert with the
variational ideas used in nonabsolute integration on the real line suggests
the following definition. We express it for a general function of pairs ξ(x, h)
but it will be applied mainly in situations where

ξ(x, h) = F (x + h) + F (x − h) − 2F (x)

or
ξ(x, h) = F (x + h) + F (x − h) − 2F (x) − f(x)h2

for some real functions F and f .

6 DEFINITION. Let E be a bounded set with a = inf E, b = sup E and let
ξ be a function defined for pairs (x, h) with x ∈ E and h sufficiently small.
Then we write

V2
s(ξ, E) = inf ΛG(a, b) = inf

{

G′
−(b) − G′

+(a)
}

(16)

where the infimum is taken over all functions G convex on an open interval
that contains E such that for every x ∈ E there is a positive number δ =
δ(G, x) so that

|ξ(x, h)| < ∆2
sG(x, h)(17)

for all 0 < h < δ.

Certainly 0 ≤ V2
s(ξ, E) ≤ +∞. If in the definition no such functions G

exist then of course we take V2
s(ξ, E) = +∞. The strict inequality in (17)

may obviously be replaced by a weaker nonstrict one. Note that because G is
convex on an interval that includes the points a and b, by (11), the expression
ΛG(a, b) must exist. We call V2

s(ξ, E) the second symmetric variation of the
function ξ. Thus far it is defined for all bounded sets E; for unbounded E
we can simply take

V2
s(ξ, E) = lim

n→∞
V2

s (ξ, E ∩ (−n, n))
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but this will play no particular role in the sequel except to permit the varia-
tion to be defined on all sets of real numbers. The variation in Definition 6
is defined relative to the containing interval [a, b]; notice that nothing is
changed by using any larger interval that contains E. To see this observe
that the expression for V2

s(ξ, E) would only be larger if [a, b] were replaced
by some larger interval in (16). But on the other hand if a function G is
given convex on an open interval containing [a, b] then it may be extended to
be convex on an open interval containing any larger interval [c, d] in such a
way that ΛG(a, b) = ΛG(c, d); thus V2

s(ξ, E) is made no larger by employing
larger intervals. Thus in the sequel we may take any containing interval to
use in (16).

Our first three lemmas offer useful tests for zero variation.

LEMMA 7 Let E be a set of real numbers having measure zero and suppose
that ξ is a real-valued function defined for pairs (x, h) with x ∈ E and h
sufficiently small. If ξ(x, h) = O(h2) as h → 0+ for every x ∈ E then
V2

s(ξ, E) = 0.

PROOF. We may suppose that E is bounded, say that E ⊂ (a, b). Let ǫ > 0
and let N be a Gδ set of measure zero containing E. There is (cf. [2, p. 124])
a positive, absolutely continuous, increasing function g so that g′(x) = +∞
at each point of N and so that |g(x)| < ǫ on [a, b]. Let G be an indefinite
integral of g. Then G is convex, ΛG(a, b) < ǫ and |ξ(x, h)| < ∆2

sG(x, h)for
all x ∈ E and sufficiently small h. This is clear since ∆2

sG(x, h)/h2 → +∞
and ξ(x, h) = O(h2) as h → 0+. From this it follows that

V2
s(ξ, E) ≤ ΛG(a, b) < ǫ

and the lemma follows.

LEMMA 8 Let E be a set of real numbers and suppose that ξ is a real-
valued function defined for pairs (x, h) with x ∈ E and h sufficiently small.
If ξ(x, h) = o(h2) as h → 0+ for every x ∈ E then V2

s(ξ, E) = 0.

PROOF. Again we may suppose that E is bounded, say that E ⊂ (a, b).
Let ǫ > 0 and write G(x) = ǫx2. Note that ∆2

sG(x, h) = 2ǫh2 and that
ΛG(a, b) = 2ǫ(b − a). As ξ(x, h) = o(h2) as h → 0+ for every x ∈ E we
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have |ξ(x, h)| < ∆2
sG(x, h) again for every x ∈ E and sufficiently small h.

By definition then

V2
s(ξ, E) ≤ ΛG(a, b) = 2ǫ(b − a).

The lemma follows since ǫ is arbitrary.

LEMMA 9 Let C be a countable set of real numbers and suppose that ξ is
a real-valued function defined for pairs (x, h) with x ∈ C and h sufficiently
small. If ξ(x, h) = o(h) as h → 0+ for every x ∈ C then V2

s(ξ, C) = 0.

PROOF. As before we may suppose that C is bounded, say that C ⊂ (a, b).
Let ǫ > 0. Let {c1, c2, c3, . . .} be an enumeration of C. There must be a
number δ(ci) > 0 so that

|ξ(ci, h)| < ǫ2−ih(18)

for 0 < h < δ(ci). Define Gi(x) = 0 (x ≤ ci) and Gi(x) = ǫ2−i(x − ci)
(x > ci). Then each Gi is convex, ΛGi

(a, b) = ǫ2−i and, by (18),

|ξ(ci, h)| < ǫ2−ih ≤ ∆2
sGi(ci, h)(19)

for sufficiently small h.
Now simply write G =

∑∞
n=1 Gi. G is convex, ΛG(a, b) ≤ ǫ and, by (19),

|ξ(ci, h)| < ǫ2−ih ≤ ∆2
sG(ci, h)

for each ci ∈ C and sufficiently small h. By definition then

V2
s(ξ, E) ≤ ΛG(a, b) ≤ ǫ

and the lemma follows since ǫ is arbitrary.

Let us show now that the variation is subadditive both as a function of
sets and as a functional.

LEMMA 10 Let E be a set of real numbers and suppose that ξ1 and ξ2 are
real-valued functions defined for pairs (x, h) with x ∈ E and h sufficiently
small. Then

V2
s(ξ1 + ξ2, E) ≤ V2

s(ξ1, E) + V2
s(ξ2, E).
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PROOF. If |ξ1(x, h)| < ∆2
sG1(x, h) for all 0 < h < δ1(x) and |ξ2(x, h)| <

∆2
sG2(x, h) for all 0 < h < δ2(x) then

|ξ1(x, h) + ξ2(x, h)| < ∆2
sG1(x, h) + ∆2

sG2(x, h)

for all 0 < h < min{δ1(x), δ2(x)}. As

ΛG1+G2
(a, b) = ΛG1

(a, b) + ΛG2
(a, b)

when these latter both exist the lemma must follow.

LEMMA 11 Let {Ei} be a sequence of sets and suppose that E ⊂ ⋃∞
i=1 Ei.

Suppose that ξ is a function defined for pairs (x, h) with x ∈ ⋃∞
i=1 Ei and h

sufficiently small. Then

V2
s(ξ, E) ≤

∞
∑

i=1

V2
s(ξ, Ei).

PROOF. We may suppose that the closures of all the sets are contained
entirely within a single interval (a, b), that the sets {Ei} are disjoint, that
each V2

s(ξ, Ei) < +∞ and that
∑∞

i=1 V2
s(ξ, Ei) converges. The general case

follows routinely once this situation is handled. Choose functions Gi convex
on [a, b] such that for every x ∈ Ei there is a δ(x) > 0 (depending on Gi) so
that |ξ(x, h)| < ∆2

sGi(x, h) for all 0 < h < δ(x) and so that

0 ≤ ΛGi
(a, b) < V2

s(ξ, Ei) + ǫ2−i.

We can insist that Gi(a) = G′
i(a) = 0, and that

Gi(x) =
∫ x

a
gi(t) dt

where gi is nonnegative and increasing on [a, b], gi(a) = 0 and gi(b) =
ΛGi

(a, b). Because
∞
∑

i=1

V2
s(ξ, Ei) + ǫ2−i < +∞

we can write g(x) =
∑∞

i=1 gi(x) which is uniformly convergent on [a, b]. So
also G(x) =

∑∞
i=1 Gi(x) =

∫ x
a g(t) dt is continuous and convex on [a, b], and

ΛG(a, b) ≤ g(b) − g(a) =
∞
∑

i=1

gi(b) =
∞
∑

i=1

ΛGi
(a, b) < +∞.
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If x ∈ E then x ∈ Ei for some i so that |ξ(x, h)| < ∆2
sGi(x, h) for all

0 < h < δ(x). Write H =
∑

j 6=i Gj . H is convex and so

|ξ(x, h)| < ∆2
sGi(x, h) + ∆2

sH(x, h) = ∆2
sG(x, h)

for all 0 < h < δ(x). Consequently, by definition,

V2
s(ξ, E) ≤ ΛG(a, b) =

∞
∑

i=1

ΛGi
(a, b) ≤

∞
∑

i=1

V2
s(ξ, Ei) + ǫ.

Letting ǫ → 0+ completes the proof.

The variation immediately provides an equivalence relation that is central
to our theory. We refer to this as “variational equivalence” and it shall play
the same role in the integration theory that the similarly named concept plays
in the Henstock theory for the Denjoy-Perron integral (as in, for example,
[25]).

12 DEFINITION. Let E be a set of real numbers and let ξ1 and ξ2 be
functions defined for pairs (x, h) with x ∈ E and h sufficiently small. We
write ξ1 ≡ ξ2 in E if V2

s(ξ1 − ξ2, E) = 0.

It is easy to check that this is an equivalence relation and that if ξ1 ≡ ξ2

in E then also ξ + ξ1 ≡ ξ + ξ2 in E for any other function ξ.
The variational expression V2

s(ξ, E) when viewed as a function of the set
E for ξ fixed provides an outer measure that will also prove central in our
theory.

13 DEFINITION. Let E be a set of real numbers and let ξ be a function
defined for pairs (x, h) with x ∈ E and h sufficiently small. We write

ξ∗(E) = V2
s(ξ, E).

The main theorems for the variational measure follow. The first asserts
that the equivalence relation preserves the measure and the second that the
measure is a true outer measure.

THEOREM 14 Let ξ1 and ξ2 be functions defined for pairs (x, h) with
x ∈ E and h sufficiently small. If ξ1 ≡ ξ2 in E then ξ∗1(E) = ξ∗2(E).

13



PROOF. By Lemma 10

V2
s(ξ1, E) ≤ V2

s(ξ1 − ξ2, E) + V2
s(ξ2, E)

and so ξ∗1(E) ≤ ξ∗2(E). Since ξ∗2(E) ≤ ξ∗1(E) may be similarly proved the
theorem follows.

THEOREM 15 Let ξ be a function defined for pairs (x, h) with x real and
h sufficiently small. Then ξ∗ is an outer measure on the real line.

PROOF. This follows directly from Lemma 11.

5 Properties of the second symmetric varia-

tion for real functions

We shall use the following convenient notation. If F , G and f are finite
functions then we define the functions ∆2

sF , f∆2
sG, f(∆ℓ)2 as the expressions

∆2
sF (x, h) = F (x + h) + F (x − h) − 2F (x),

f∆2
sG(x, h) = f(x)(G(x + h) + G(x − h) − 2G(x))

and
f(∆ℓ)2(x, h) = f(x)h2

wherever these are defined.
In particular then a meaning is now attached to the equivalence relations

∆2
sF ≡ f∆2

sG, f(∆ℓ)2 ≡ ∆2
sF , etc. and this relation supplies a convenient

way of expressing the variational ideas of the integration theory. The varia-
tional measures ∆2

sF
∗(E) = V2

s(∆
2
sF, E) play a key role too.

All of the technical properties of the second order symmetric integrals
that we shall study are expressed in properties of this equivalence relation
and the measures. The theorems of this section provide a systematic account
of the properties of the equivalence relation; properties of the measures are
discussed in the next section.

Throughout the theorems in this section we assume that H , F , and G
denote continuous functions on an interval [a, b] and f , g denote arbitrary
finite functions defined on an interval (a, b).

14



THEOREM 16 If ∆2
sH ≡ 0 in (a, b) then H is linear in (a, b).

PROOF. Let H1 = H − L where L is linear and H1(a) = H1(b) = 0. Then
∆2

sH1 = ∆2
sH and so ∆2

sH1 ≡ 0. Now we must show that H1 vanishes in
(a, b). Let ǫ > 0. Choose a function G convex on an open interval that
contains [a, b] and a positive function δ on (a, b) so that ΛG(a, b) < ǫ and so
that

∣

∣

∣∆2
sH1(x, h)

∣

∣

∣ < ∆2
sG(x, h) (a < x < b)(20)

for all 0 < h < δ(x). By subtracting from G a linear function we may suppose
that G(a) = G(b) = 0. Note that, because ΛG(a, b) < ǫ, this requires

0 ≥ G(x) > −ǫ(b − a) (a < x < b).(21)

From (20) and the continuity of G and H we see that both functions
G+H1 and G−H1 are convex on (a, b) and consequently from (21) we have
|H1(x)| < ǫ(b − a) for all a < x < b. Since ǫ is arbitrary H1 must vanish as
stated.

COROLLARY 17 If ∆2
sF ≡ ∆2

sG in (a, b) then F − G is linear in (a, b).

PROOF. This is immediate.

COROLLARY 18 If ∆2
sF ≡ ∆2

sG in (a, b) and either of ΛF (a, b) and
ΛG(a, b) exists then ΛF (a, b) = ΛG(a, b).

PROOF. This is immediate from the theorem and the observation (stated in
Section 2) that if F −G is linear and either expression exists then ΛF (a, b) =
ΛG(a, b).

THEOREM 19 If ∆2
sF ≡ f(∆ℓ)2 in a set E then F is smooth at every

point in E and D2 F (x) = f(x) almost everywhere in E.

PROOF. We may suppose that E is bounded, say that E ⊂ (a, b). Let ǫ > 0
and choose a function G convex on an open interval containing [a, b] so that
ΛG(a, b) < ǫ and such that for every x ∈ E there is a δ(x) > 0 so that

∣

∣

∣∆2
sF (x, h) − f(x)h2

∣

∣

∣ < ∆2
sG(x, h)(22)

15



for all 0 < h < δ(x). For any a < x < b and for small enough h we have

∆2
sG(x, h) ≤ h

(

G′
−(x + h) − G′

+(x − h)
)

< hΛG(a, b) < ǫh.(23)

Thus from (22) and (23) we see that
∣

∣

∣∆2
sF (x, h)

∣

∣

∣ ≤ |f(x)|h2 + ǫh

and from this it follows that F is smooth at each point of E.
For the second part of the proof let E0 denote the set of points x in E at

which the statement D2 F (x) = f(x) fails. For each such point x there must
exist a η(x) > 0 and a sequence hi → 0+ (also depending on x) so that

∣

∣

∣∆2
sF (x, hi) − f(x)hi

2
∣

∣

∣ > η(x)hi
2.(24)

Let c > 0 and define Ec = {x ∈ E0; η(x) > c}. We show that each such
set Ec has measure zero and it must follow that E0 has measure zero too so
that the theorem is proved.

Suppose not. Then |Ec| > 0 for some fixed c > 0. The collection of
intervals of the form [x − h, x + h] ⊂ (a, b) with x ∈ Ec, 0 < h < δ(x) and

∣

∣

∣∆2
sF (x, h) − f(x)h2

∣

∣

∣ > ch2.(25)

is, by (24), a Vitali cover of Ec. Select a finite disjoint sequence of such
intervals {[xi − hi, xi + hi]} (i = 1, 2, . . . , n) so that

|Ec| < 4
n
∑

i=1

hi.

Then, using (22) and (25), we have

|Ec| < 4c−1
n
∑

i=1

∣

∣

∣∆2
sF (xi, hi) − f(xi)hi

2
∣

∣

∣ /hi

< 4c−1
n
∑

i=1

∣

∣

∣∆2
sG(xi, hi)

∣

∣

∣ /hi

< 4c−1
n
∑

i=1

(G′
−(xi + hi) − G′

+(xi − hi))

< 4c−1ΛG(a, b) < 4c−1ǫ.

As ǫ is arbitrary this is a contradiction and the theorem is proved.

16



COROLLARY 20 If ∆2
sF ≡ f(∆ℓ)2 in (a, b) then f is measurable.

PROOF. By the theorem f is almost everywhere the second symmetric
derivative of a continuous function and so f is measurable.

COROLLARY 21 If f(∆ℓ)2 ≡ 0 in a set E then f = 0 almost everywhere
in E.

PROOF. By the theorem f is almost everywhere in E the second symmetric
derivative of any constant function and so f must vanish almost everywhere
in E.

COROLLARY 22 If f(∆ℓ)2 ≡ g(∆ℓ)2 in a set E then f = g almost ev-
erywhere in E.

PROOF. This is immediate from the preceding corollary.

THEOREM 23 If D2 F (x) = f(x) everywhere in a set E then ∆2
sF ≡

f(∆ℓ)2 in E.

PROOF. The relation D2 F (x) = f(x) for x in a set E is exactly equivalent
to the requirement F (x + t) + F (x − t) − 2F (x) − f(x)t2 = o(t2) for x ∈ E
as t → 0+. The theorem now follows directly from Lemma 8.

THEOREM 24 If f = 0 almost everywhere in a set E then f(∆ℓ)2 ≡ 0
in E.

PROOF. This follows directly from Lemma 7.

COROLLARY 25 If f = g almost everywhere in a set E then f(∆ℓ)2 ≡
g(∆ℓ)2 in E.

PROOF. This is immediate from the theorem.

THEOREM 26 If f is Lebesgue or Denjoy-Perron integrable in [a, b] with
a second indefinite integral F then ∆2

sF ≡ f(∆ℓ)2 in (a, b).

17



PROOF. We may suppose that f is Denjoy-Perron integrable on [a, b], that
H is an indefinite integral of f and that F (x) =

∫ x
a H(t) dt. Let ǫ > 0.

By a well-known characterization of the Denjoy-Perron integral (eg. [25,
pp. 225–233]) there must exist a continuous, positive, increasing function g
on [a, b] with g(b) − g(a) < ǫ and a δ(x) > 0 (a < x < b) so that

|H(x + t) − H(x) − f(x)t| < |g(x + t) − g(x)|(26)

for all x ∈ (a, b) and for all 0 < |t| < δ(x). We may set g(x) = g(a) (x < a)
and g(x) = g(b) (x > b). Write G(x) =

∫ x
a g(t) dt, fix x and fix h ∈ (0, δ(x)).

We integrate the expression (26) for t in the intervals [0, h] and [−h, 0] and
subtract the results. This gives immediately

∣

∣

∣∆2
sF (x, h) − f(x)h2

∣

∣

∣ < ∆2
sG(x, h)

for all 0 < h < δ(x).
Note that G is convex and that ΛG(a, b) = g(b)−g(a) < ǫ. If we compare

with Definition 6 we see that we have proved that

V2
s(∆

2
sF − f(∆ℓ)2, (a, b)) < ǫ.

From this we evidently obtain that ∆2
sF ≡ f(∆ℓ)2 in (a, b) as required.

THEOREM 27 If f ≥ 0 and ∆2
sF ≡ f(∆ℓ)2 in (a, b) for a function F

continuous on [a, b] then f is Lebesgue integrable and F is a second indefinite
Lebesgue integral for f .

PROOF. Let ǫ > 0 and choose functions Gn convex on an open interval
containing [a, b] so that ΛGn

(a, b) < 1/n, so that Gn(a) = Gn(b) = 0 and
such that for every x ∈ (a, b) there is a δn(x) > 0 so that

∣

∣

∣∆2
sF (x, h) − f(x)h2

∣

∣

∣ < ∆2
sGn(x, h)

for all 0 < h < δn(x). Because f is nonnegative this shows that

∆2
sGn(x, h) + ∆2

sF (x, h) > 0 (a < x < b)

for small enough h. Consequently F + Gn is convex. The limit is convex
too and so we obtain that F itself is convex. Since F is convex it is the
integral of some monotonic function F1, F ′

1 = f1 exists almost everywhere

18



and f1 is Lebesgue integrable. This means then that the second symmetric
derivative of F exists and is equal to f1 almost everywhere. By Theorem 19,
f = f1 almost everywhere so, since f1 is Lebesgue integrable, f is Lebesgue
integrable. Let H be a second indefinite integral for f . By Theorem 26 then
∆2

sH ≡ f(∆ℓ)2 in (a, b). Since we already have ∆2
sF ≡ f(∆ℓ)2 in (a, b) this

means that ∆2
sF ≡ ∆2

sH in (a, b) and so, by Corollary 17, H and F differ by
a linear function. The theorem follows.

6 Measure properties

This section is devoted mostly to the properties of the variational measures
and especially to the real-variable properties of the function F as expressed
by the measure ∆2

sF
∗. This measure expresses smoothness properties of F

and various properties of the second symmetric derivative of F .

THEOREM 28 A function F is smooth at a point x0 if and only if

∆2
sF

∗({x0}) = 0.

PROOF. By Theorem 19 if ∆2
sF ≡ 0 in the set {x0} then F is smooth at

x0. The converse follows directly from Lemma 9.

THEOREM 29 If F is convex on an open interval containing [a, b] then

∆2
sF

∗ ((a, b)) = ΛF (a, b).

PROOF. If G is convex on an open interval containing [a, b] and

∣

∣

∣∆2
sF (x, h)

∣

∣

∣ < ∆2
sG(x, h) (a < x < b)

for sufficiently small h then evidently G−F is convex on (a, b). Consequently,
by (10),

0 ≤ ΛG−F (a, b) = ΛG(a, b) − ΛF (a, b)

and so ΛF (a, b) ≤ ΛG(a, b). From this it follows that

V2
s(∆

2
sF, (a, b)) ≥ ΛF (a, b).(27)
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On the other hand take G(x) = F (x) + ǫx2 for any ǫ > 0. Certainly
|∆2

sF (x, h)| < ∆2
sG(x, h) (a < x < b) for sufficiently small h and G itself

is convex. From this it follows that

V2
s(∆

2
sF, (a, b)) ≤ ΛG(a, b) = ΛF (a, b) + 2ǫ(b − a).(28)

As ǫ is arbitrary (27) and (28) together show that V2
s(∆

2
sF, (a, b)) =

ΛF (a, b) as required.

COROLLARY 30 If F (x) =
∫ x
a G(t) dt where G has bounded variation on

the interval [a, b] then

∆2
sF

∗ ((a, b)) ≤ Var(G, a, b).(29)

PROOF. Suppose first that G is nondecreasing on [a, b]. Then by the theo-
rem

∆2
sF

∗ ((a, b)) = ΛF (a, b) ≤ G(b) − G(a).

In general if G = G1 −G2 where both G1 and G2 are nondecreasing on [a, b]
then F = F1 − F2 where F1 =

∫

G1 and F2 =
∫

G2. By Lemma 10 then

V2
s(∆

2
sF, (a, b)) ≤ V2

s(∆
2
sF1, (a, b)) + V2

s(∆
2
sF2, (a, b)) ≤ Var(G, a, b)

and (29) is proved.

THEOREM 31 Let f be a measurable function and E a measurable set.
Then if we write ξ(x, h) = f(x)h2 for all x ∈ E and h > 0 we have

ξ∗(E) =
∫

E
|f(t)| dt.

PROOF. We may suppose that E is bounded and E ⊂ (a, b). Write g(x) =
|f(x)|χE(x), G1(x) =

∫ x
a g(t) dt and G(x) =

∫ x
a G1(t) dt. By Theorem 26 we

have ∆2
sG ≡ g(∆ℓ)2 in (a, b) so that in particular ∆2

sG ≡ f(∆ℓ)2 in E and
∆2

sG ≡ 0 in (a, b) \E. Thus ∆2
sG

∗ ((a, b) \ E) = 0 and so, using Theorem 29,

∆2
sG

∗(E) = ∆2
sG

∗ ((a, b)) = ΛG(a, b) =
∫

E
|f(t)| dt.

The final assertion follows since ∆2
sG ≡ ξ in E.
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COROLLARY 32 If D2 F (x) = f(x) everywhere in a measurable set E
then

∆2
sF

∗(E) =
∫

E
|f(t)| dt.

PROOF. This is immediate from the theorem and Theorems 23 and 14.

THEOREM 33 Suppose that

−k < D2 F (x) ≤ D2 F (x) < k

at every point of a set E. Then ∆2
sF

∗(E) ≤ k|E|.

PROOF. We may suppose that E is bounded, say that E ⊂ (a, b). Let ǫ > 0
and choose an open set O ⊃ E with |O| < |E| + ǫ. Set

g(x) =
∫ x

a
cχO(t) dt

where c > k and

G(x) =
∫ x

a
g(t) dt.

Note that D2 G(x) = c at each point x in O, that G is convex and that
ΛG(a, b) ≤ c|O|.

Since by hypothesis |∆2
sF (x, h)| < kh2 for every x ∈ E and every suffi-

ciently small h we see (from the fact that D2 G(x) = c > k) that

∣

∣

∣∆2
sF (x, h)

∣

∣

∣ < ∆2
sG(x, h)

for every x ∈ E and small h. Thus

∆2
sF

∗(E) ≤ ΛG(a, b) ≤ c|O| < c(|E| + ǫ).

Now, letting c → k and ǫ → 0+ completes the proof.

COROLLARY 34 Suppose that

−∞ < D2 F (x) ≤ D2 F (x) < +∞

at every point of a set E. Then ∆2
sF

∗ is σ–finite on E and vanishes on every
subset of E of Lebesgue measure zero.
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PROOF. This follows directly from the theorem since the set E may be
written as the union of the sets En (n = 1, 2, 3, . . .) where

En =
{

x ∈ E; −n < D2 F (x) ≤ D2 F (x) < n
}

.

The estimate in Theorem 33 also goes partially in the opposite direction.

THEOREM 35 Suppose that D2 F (x) > k or that D2 F (x) < −k at every
point of a set E. Then 2∆2

sF
∗(E) ≥ k|E|.

PROOF. We may suppose that E is bounded, say that E ⊂ (a, b). Let
ǫ > 0. Let G be any function convex on an open interval containing [a, b]
and such that

∣

∣

∣∆2
sF (x, h)

∣

∣

∣ < ∆2
sG(x, h)

if x ∈ E and 0 < h < δ(x).
The collection of intervals of the form [x − h, x + h] ⊂ (a, b) with x ∈ E,

0 < h < δ(x) and
∣

∣

∣∆2
sF (x, h)

∣

∣

∣ > kh2

is, by the hypotheses of the theorem, a Vitali cover of E. Select a finite
disjoint sequence of such intervals {[xi − hi, xi + hi]} (i = 1, 2, . . . , n) so that

|E| − ǫ < 2
∑

hi.

Then we must have

|E| − ǫ < 2
∑

hi ≤
n
∑

i=1

2k−1
∣

∣

∣∆2
sF (xi, hi)

∣

∣

∣ /hi

< 2k−1
n
∑

i=1

∣

∣

∣∆2
sG(xi, hi)

∣

∣

∣ /hi

< 2k−1
n
∑

i=1

G′
−(xi + hi) − G′

+(xi − hi))

< 2k−1ΛG(a, b).

As this holds for all such functions G it follows that

|E| − ǫ ≤ 2k−1∆2
sF

∗(E)

and hence, letting ǫ → 0+, we obtain 2∆2
sF

∗(E) ≥ k|E| as required.

22



COROLLARY 36 Let F be continuous and suppose that the measure ∆2
sF

∗

is σ–finite on a set E. Then for almost every point x ∈ E

∆2
sF (x, h) = O(h2)

as h → 0+.

PROOF. We may assume that ∆2
sF

∗(E) < +∞. Let us show that for a.e.
point x ∈ E the upper derivate D2 F (x) < +∞. Let E0 denote the set of
points x ∈ E at which D2 F (x) = +∞. Then by the theorem

k|E0| ≤ 2∆2
sF

∗(E0) < +∞

for every k > 0. It follows that |E0| = 0 and so D2 F (x) < +∞ for a.e. point
x ∈ E. In a similar way it may be shown that D2 F (x) > −∞ for a.e. point
x ∈ E. The corollary now follows.

COROLLARY 37 Let F be continuous and suppose that the measure ∆2
sF

∗

is σ–finite on a set E. Then both the derivative F ′(x) and the second order
symmetric derivative D2 F (x) exist at almost every point of E, and moreover
ADF ′(x) = D2 F (x) a.e. in E.

PROOF. Here ADF ′(x) denotes the approximate derivative of the function
F ′ which is defined almost everywhere in E. This follows from the preceding
corollary by using a theorem of Marcinkiewicz and Zygmund (see [46, Vol. I,
pp. 78–80]).

The next two theorems can be considered as generalized versions of The-
orem 23.

THEOREM 38 Let F be continuous. If F is smooth in a set E, if

−∞ < D2 F (x) ≤ D2 F (x) < +∞

nearly everywhere in E and D2 F (x) = f(x) almost everywhere in E then
∆2

sF ≡ f(∆ℓ)2 in E.

PROOF. Write ξ1 = ∆2
sF and ξ2 = f(∆ℓ)2. Let E1 be the set of points x in

E at which D2 F (x) = f(x); let E2 be the set of points x in E \E1 at which
the derivates D2 F (x) and D2 F (x) are finite, and let E3 = E \ (E1 ∪ E2).
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By Theorem 23 (ξ1 − ξ2)
∗(E1) = 0. By Corollary 34 and Theorem 24

ξ∗1(E2) = ξ∗2(E2) = 0 since |E2| = 0 by hypothesis. Finally, by Theorem 28,
ξ∗1(E3) = ξ∗2(E3) = 0 since E3 is countable and F is smooth (Theorem 19).
Putting these together we easily obtain (ξ1 − ξ2)

∗(E) = 0 which translates
back to the statement

V2
s(∆

2
sF − f(∆ℓ)2, E) = 0

and this is the conclusion of the theorem.

THEOREM 39 The relation ∆2
sF ≡ f(∆ℓ)2 in E holds if and only if the

identity D2 F (x) = f(x) is true both almost everywhere and ∆2
sF

∗–almost
everywhere in E.

PROOF. If D2 F (x) = f(x) is true for all x ∈ E \ N then ∆2
sF ≡ f(∆ℓ)2

in E \ N . If in addition ∆2
sF

∗(N) = |N | = 0 then certainly ∆2
sF ≡ f(∆ℓ)2

in E. Conversely if ∆2
sF ≡ f(∆ℓ)2 in E then there is, by Theorem 19, a set

N of Lebesgue measure zero so that D2 F (x) = f(x) (x ∈ E \ N). Since N
has measure zero and ∆2

sF
∗(N) = (f(∆ℓ)2)

∗
(N) it follows from Theorem 24

that ∆2
sF

∗(N) = 0 as required.

7 The integral

The integral we define in this section is motivated by the problem of deter-
mining (up to a linear function) a continuous function F from a function f
if D2 F (x) = f(x) everywhere in an interval [a, b]. Interpreted in this way we
should produce a second order integral. This is the approach taken in the
James integral. A first order integral version is available if the problem is ad-
justed to require rather the determination of ΛF (a, b). This is the approach
of Mař́ık [35] and we shall follow his development although in a variational
setting rather than a Perron setting.

40 DEFINITION. A finite function defined everywhere on an interval (a, b)
is said to be (V2

s)–integrable on [a, b] if there is a continuous function F on
[a, b] so that ∆2

sF ≡ f(∆ℓ)2 in (a, b) and so that

ΛF (a, b) = lim
h→0+

F (a) − F (a + h) − F (b − h) + F (b))

h
(30)
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exists. We write then

ΛF (a, b) = (V2
s)
∫ b

a
f(x) dx.

The definition requires a justification that (30) does not depend on the
choice of function F ; this is supplied by Corollary 18. The prefix “(V2

s)” can
frequently be omitted since, as we shall see, the integral is compatible with
the common integrals on the real line. The function F is called a second
primitive for f . If F is a second primitive then we shall see that F ′ exists
almost everywhere and can usually be considered some kind of a first order
primitive for f .

Here are a number of elementary properties of the integral. The proofs
are almost immediate consequences of the theorems of Section 6; we can omit
most of the details.

THEOREM 41 Let f and g be (V2
s)–integrable on an interval [a, b]. Then

so too is any linear combination sf + tg and

∫ b

a
(sf(x) + tg(x)) dx = s

∫ b

a
f(x) dx + t

∫ b

a
g(x) dx

in the sense of this integral.

PROOF. This follows from the linearity of the equivalence relation and the
linearity expressed in (10).

THEOREM 42 Let f be integrable in either the Riemann, Lebesgue or
Perron senses on an interval [a, b]. Then f has an (V2

s)– integral on that
interval and

∫ b

a
f(x) dx

has the same value in any of these senses.

PROOF. This follows from Theorem 26.

THEOREM 43 Suppose that f is (V2
s)–integrable on [a, b] and nonnega-

tive. Then f is Lebesgue integrable there.

PROOF. This follows from Theorem 27
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THEOREM 44 Let f be (V2
s)–integrable on an interval [a, b]. Then f is

measurable.

PROOF. This follows from Corollary 20.

THEOREM 45 Let f be (V2
s)–integrable on an interval [a, b] and suppose

that f = g almost everywhere in [a, b] then g is (V2
s)–integrable on [a, b] and

∫ b

a
f(x) dx =

∫ b

a
g(x) dx.

PROOF. This follows from Corollary 25.

THEOREM 46 Let f be (V2
s)–integrable on an interval [a, b]. Then there

is a set B of full measure in (a, b) and f is (V2
s)–integrable on [c, d] for all c,

d ∈ B.

PROOF. If F is a second primitive of f on [a, b] then, by Corollary 37, F ′

exists almost everywhere in that interval, say on a set B of full measure in
(a, b). Using equation (11) we see that ΛF (c, d) = F ′(d) − F ′(c) must exist
for c, d ∈ B. It now follows that f is is (V2

s)–integrable on [c, d] for all such
c, d as required.

In regards to this theorem it is well to point out that there is no claim
here that the integral

∫ x
a f(t) dt exists for almost every x ∈ (a, b) as is the

case with some such integrals. In Section 8 an example is given to illustrate
this.

The next two theorems are the major differentiation results for this in-
tegral. This first shows that the integrand is the derivative of the second
primitive and the second shows how an exact second symmetric derivative
may be integrated.

THEOREM 47 Let f be (V2
s)–integrable on [a, b] and suppose that F is a

second primitive for f . Then F is continuous on [a, b], a.e. differentiable and
smooth in (a, b), and D2 F (x) = f(x) almost everywhere in (a, b). Moreover
F ′ is almost everywhere approximately differentiable and AD F ′(x) = f(x)
almost everywhere in (a, b)..

PROOF. This follows from Corollary 37.
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THEOREM 48 Let F be continuous on [a, b]. Suppose that F is smooth
in (a, b),

−∞ < D2 F (x) ≤ D2 F (x) < +∞
nearly everywhere and that ΛF (a, b) exists. Then D2 F (x) = f(x) exists
almost everywhere in (a, b), f is (V2

s)–integrable on [a, b] and

(V2
s)
∫ b

a
f(t) dt = ΛF (a, b).

PROOF. This follows from Theorem 38. Note that here f is defined only
almost everywhere and so we must either assign an arbitrary value to f(x)
where this derivative does not exist or extend (using Theorem 45) the integral
to functions defined almost everywhere.

The final property of the (V2
s)–integral will be useful in applications to

trigonometric series. Note that the expression F (2π)+F (−2π)−2F (0) that
appears in (31) may also be written as ∆2

sF (0, 2π).

THEOREM 49 Suppose that f is 2π–periodic and that there is a continu-
ous function F on the interval [−2π, 2π] so that ∆2

sF ≡ f(∆ℓ)2 in (−2π, 2π).
Then

ΛF (0, 2π) = −F (2π) + F (−2π) − 2F (0)

2π
,(31)

f is (V2
s)–integrable on [0, 2π] and

(V2
s)
∫ 2π

0
f(t) dt = −F (2π) + F (−2π) − 2F (0)

2π
.

PROOF. It is enough to establish (31) since ∆2
sF ≡ f(∆ℓ)2 in (0, 2π) as

well. We can simplify our computations by assuming that F is normalized on
[−2π, 2π] by requiring that F (−2π) = F (2π) = 0. Write G(x) = F (x + 2π);
then, since f is 2π–periodic, we have ∆2

sG ≡ f(∆ℓ)2 in (−2π, 0) so that
∆2

sG ≡ ∆2
sF in (−2π, 0). Consequently F (x + 2π) − F (x) is linear on that

interval. From this we obtain that

F (x + 2π) = F (x) − F (0) − F (0)

π
x.(32)

Now then directly from the definition of ΛF (0, 2π), from (32) and from the
fact that F must be smooth at 0 we obtain

ΛF (0, 2π) = lim
h→0+

−F (2π − h) + F (h) − F (2π) − F (0)

h
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= lim
h→0+

−F (h) + F (−h) − F (0)

h
− F (0)

π
= −F (0)

π

which is the required conclusion (as F (−2π) = F (2π) = 0). The final in-
tegration statement follows immediately from this since F is a continuous
second primitive of f on [0, 2π].

8 Additivity

The integral does not quite have the usual additivity properties one expects
to encounter in integration theories. In part this comes from the symmetric
nature of the integral and in part from the fact that conditions ensuring
integrability on two abutting intervals may break down at the common point.

A simple example (cf. [35, p. 58]) illustrates one aspect of the problem.
Let

F (x) = x
√

1 − x2 (−1 ≤ x ≤ 1).(33)

Then while the integral (V2
s)
∫ 1
−1 F ′′(t) dt exists this function is not integrable

on [−1, c] for any value of c ∈ (−1, 1). Note that the integral does exist on
[c, d] for any −1 < c < d < 1. This example illustrates how the (V2

s)–integral
exploits the symmetry at the points −1 and 1.

It is also possible for the integral to exist on [a, b] and on [b, c] but not
exist on the interval [a, c]. Extend the function F in example (33) so as to
be zero everywhere outside of [−1, 1]. Then f = F ′′ is (V2

s)–integrable on
each of the intervals [−1, 1] and [1, 2] but not integrable on [−1, 2]. It is the
lack of smoothness of F at 1 that produces the problem.

If we assume integrability then additivity is easy enough to see as the
first theorem shows.

THEOREM 50 If f is (V2
s)–integrable on [a, b] and on [a, c] (a < b < c)

then it is integrable on [b, c] and
∫ c

a
f(x) dx =

∫ b

a
f(x) dx +

∫ c

b
f(x) dx

in the sense of this integral.

PROOF. Let F be a second primitive for f on [a, c]. By hypothesis ΛF (a, b)
and ΛF (a, c) exist and, by Corollary 37, F is smooth. This is enough to
establish that

ΛF (b, c) = ΛF (a, c) − ΛF (a, b)(34)
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and the theorem is proved. Check the following identity

F (b) − F (b + h) − F (c − h) + F (c)

= (F (a) − F (a + h) − F (c − h) + F (c))

− (F (a) − F (a + h) − F (b − h) + F (b)) + ∆2
sF (b, h)

and then (34) follows readily.

The example (33) above, illustrating that a function may be integrable
on two abutting intervals [a, b] and [b, c] and yet not on the interval [a, c],
also contains the clue to when this is possible. If the conditions exist for a
“smooth” join then the additivity is available.

THEOREM 51 Let a < c < b and suppose that f is (V2
s)–integrable on

[a, c] with a second primitive F and on [c, b] with a second primitive G. Then
f is (V2

s)–integrable on [a, b] if and only if the limit

lim
h→0+

F (c) − F (c − h) − G(c + h) + G(c)

h
(35)

exists.

PROOF. If the function f is (V2
s)–integrable on [a, b] then there is a con-

tinuous H with ∆2
sH ≡ f(∆ℓ)2 in (a, b). In particular ∆2

sH ≡ ∆2
sF in (a, c)

and ∆2
sH ≡ ∆2

sG in (c, b). Thus H − F is linear in the first interval and
H − G is linear in the second. Write H(x) = F (x) + α1x + β1 (a ≤ x ≤ c)
and H(x) = G(x)+α2x+β2 (c ≤ x ≤ b). The condition that H is smooth at
c now translates directly into the condition that the limit in (35) is α2 −α1.

Conversely suppose that the limit in (35) exists and is α. We write
H(x) = F (x) (a ≤ x ≤ c) and

H(x) = F (c) + G(x) − G(c) + α(x − c) (a ≤ x ≤ c).

Then ∆2
sH ≡ f(∆ℓ)2 in (a, b) \ {c}. It is straightforward now to check, using

the fact that the limit in (35) is α, that H is smooth at c. This gives the
relation ∆2

sH ≡ f(∆ℓ)2 in (a, b).
For f to be integrable we need now only the existence of ΛH(a, b). But,

using (13) and the fact that H is smooth at c, we have

ΛF (a, c) + ΛG(c, b) = ΛH(a, c) + ΛH(c, b) = ΛH(a, b)

and so the theorem is proved.
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9 Relations to the James P
2–integral

In this section we shall present the classical definition of the P2–integral as
given in Zygmund [46, Vol. II, pp. 86–91] and show how it relates to the
V2

s–integral. There are a number of equivalent definitions in the literature.
It might be noted that the version cited in Skljarenko [38] is more restrictive
since he assumes that the major and minor functions are smooth.

Let f be a finite valued function defined everywhere on an interval (a, b).
A function M is a second symmetric major function for f if M is continuous
on [a, b], if M(a) = M(b) = 0 and if D2 M(x) ≥ f(x) for each a < x < b.
A function N is a second symmetric minor function for f if −M is a second
symmetric major function for −f . It can be seen that M(x) ≤ N(x) for any
such pair. If, for some value of c ∈ (a, b),

sup
M

M(c) = inf
N

N(c)

then it can be shown that F (x) = supM M(x) = infN N(x) exists for all
a ≤ x ≤ b. In this case f is said to be P2–integrable on [a, b] and the
function F is called its second indefinite P2–integral on [a, b]. In the usual
notation one writes

F (c) = (P2)
∫

a,b,c
f(t) dt (a ≤ c ≤ b).

The original notation in [24] and [26] differs; we follow Zygmund here. For
further details and a development of this integral directly from the definition
see this work. We wish to relate these concerns directly to the earlier material
on symmetric variation. The first lemma is a step towards this; note that
this lemma does not quite assert that ∆2

sF ≡ f(∆ℓ)2 on (a, b) which is our
goal.

LEMMA 52 A finite function defined everywhere on an interval (a, b) is
P2–integrable on [a, b] if and only if there is a continuous function F on [a, b]
with the following property: for every ǫ > 0 there is a function G convex and
continuous on [a, b] with G(a) = G(b) = 0, with −ǫ < G(x) (a < x < b) and
such that

∣

∣

∣∆2
sF (x, h) − f(x)h2

∣

∣

∣ < ∆2
sG(x, h) (a < x < b)

for all sufficiently small h > 0. In this case

H(x) = F (x) − F (a) − (F (b) − F (a))(x − a)/(b − a)
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is a P2–indefinite integral for f on [a, b].

PROOF. A proof can be found in Skljarenko [38]. It is straightforward in
any case.

THEOREM 53 A finite function defined everywhere on an interval (a, b)
is P2–integrable on [a, b] if and only if there is a continuous function F on
[a, b] so that ∆2

sF ≡ f(∆ℓ)2 on (a, b). In this case

H(x) = F (x) − F (a) − (F (b) − F (a))(x − a)/(b − a)

is a P2–indefinite integral for f on [a, b].

PROOF. The sufficiency of this condition is evident in view of Lemma 52. To
prove that the condition is necessary let us suppose that f is P2–integrable on
[a, b]. Let ǫ > 0 and fix a < c < d < b. By Lemma 52 there is a continuous,
convex G on [a, b] with −ǫ < G(x) (a < x < b), with G(a) = G(b) = 0 and
so that

∣

∣

∣∆2
sF (x, h) − f(x)h2

∣

∣

∣ < ∆2
sG(x, h) (a < x < b)

for all sufficiently small h > 0. Note that G′
+(c) > −ǫ(c− a)−1 and G′

−(d) <
ǫ(b − d)−1 and consequently

ΛG(c, d) = G′
−(d) − G′

+(c) < ǫ(c − a)−1 + ǫ(b − d)−1.

Comparing with Definition 6 and letting ǫ → 0+ we see that we have proved
that

V2
s(∆

2
sF − f(∆ℓ)2, (c, d)) = 0.

Now the interval (a, b) may be expressed as the union of the intervals (a +
n−1, b− n−1) for n = 1, 2, 3 . . . and ∆2

sF ≡ f(∆ℓ)2 on each such interval. By
Lemma 11 it follows that ∆2

sF ≡ f(∆ℓ)2 on (a, b) as required.

Theorem 53 shows that there is an intimate relation between the P2–
integral and the (V2

s)–integral. From Theorem 53 we have trivially that a
function that is (V2

s)–integrable must be also P2–integrable. This can go
occasionally in the other direction too. We express these observations as
corollaries.

COROLLARY 54 A function f defined everywhere on an interval (a, b) is
V2

s–integrable on [a, b] if and only if it is P2–integrable on [a, b] and ΛF (a, b)
exists where F is a P2–indefinite integral for f on [a, b].
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PROOF. This follows immediately from the theorem.

COROLLARY 55 Suppose that a function f is P2–integrable on an inter-
val [a, b] with a P2–primitive F . Then F ′(x) exists for every x in a set B of
full measure in (a, b), f is V2

s–integrable in [c, d] for all c, d ∈ B and

(V2
s)
∫ d

c
f(t) dt = F ′(d) − F ′(c)(36)

for all c, d ∈ B.

PROOF. This follows from the theorem together with Corollary 37 and
equation (11).

COROLLARY 56 Suppose that f is 2π–periodic and P2–integrable on the
interval [−2π, 2π] with P2–primitive F . Then f is (V2

s)–integrable on [0, 2π]
and

(V2
s)
∫ 2π

0
f(t) dt = −F (2π) + F (−2π) − 2F (0)

2π
.

so that, in particular,

(V2
s)
∫ 2π

0
f(t) dt = −1

π

∫

−2π,2π,0
f(t) dt.

PROOF. This follows from the theorem together with Theorem 49.

10 Relations to the Burkill (SCP)–integral

In this section we present an account of the (SCP)–integral of Burkill and
show its relation with the integral of the preceding section. In Burkill’s
original account he makes a smoothness assumption on the major and minor
functions which obscures the connection with the P2–integral. The version
presented here is formally more general and would include any of the other
variants which might be found in the literature. For the role of smoothness
conditions in this and the higher order James integrals see [20].

The (SCP)–integral is based on the symmetric Cesàro derivative which is
really just a version of the second order symmetric derivative. If a function
G is integrable in any appropriate sense (usually taken as the Denjoy-Perron
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integral) with an indefinite integral F then one writes for the symmetric
Cesàro derivates

SCD G(x) = D2 F (x) and SCD G(x) = D2 F (x).

We say that G is (SC)–lower semicontinuous at a point x if

lim inf
h→0+

∆2
sF (x, h)/h ≥ 0

and that G is (SC)–upper semicontinuous at x if

lim sup
h→0+

∆2
sF (x, h)/h ≤ 0.

If both conditions hold G is said to be (SC)–continuous which is evidently
just the statement that F is smooth at x. We say that G is (C)–continuous
at a point if G is the derivative of F at that point. (C)–continuity at the
endpoints of an interval is normally interpreted in a one-sided sense.

Write, for any integrable function G with F =
∫

G,

Θ2
sG(x, h) = ∆2

sF (x, h).

Explicitly then

Θ2
sG(x, h) =

∫ x+h

x
G(t) dt −

∫ x

x−h
G(t) dt =

∫ h

0
(G(x + t) − G(x − t)) dt.

Now we see that G is (SC)–continuous at a point x if Θ2
sG(x, h) = o(h)

as h → 0+; it is (SC)–lower semicontinuous or (SC)–upper semicontinuous
accordingly as

lim inf
h→0+

Θ2
sG(x, h)/h ≥ 0

or
lim sup

h→0+
Θ2

sG(x, h)/h ≤ 0.

The SCD–derivative is the limit of the ratio Θ2
sG(x, h)/h2. These notions,

then, are defined as direct properties of G without an explicit reference to
the primitive function F .

A standard Perron type integral based on this derivative is defined in
Burkill [11] and termed the (SCP)–integral. A brief version is now given
here. Note that because of the relaxed conditions on the (SC)–continuity
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(assumption (2.) below) this definition is formally more general than the
original one in [11].

Let f be a finite valued function in an interval (a, b) and B a set of full
measure in [a, b] containing both points a and b. A function M is said to be
an (SCP)–major function for f on [a, b] with basis B if

1. M(a) = 0.

2. M is (SC)–lower semicontinuous everywhere in (a, b).

3. M is (C)–continuous in B.

4. SCD M(x) ≥ f(x) for almost every a < x < b.

5. SCD M(x) > −∞ for nearly every a < x < b (i.e. except possibly in a
countable set N).

Note that the conditions (4) and (5) already show that M must be (SC)–
lower semicontinuous except possibly at the points where SCD M(x) = −∞;
the force of assumption (2) is to get semicontinuity at these points too. It is
here that our definition differs from the original of Burkill; he assumes instead
(SC)–continuity at each point of (a, b) and this places an extra superfluous
assumption on the major and minor functions.

A function m is said to be an (SCP)–minor function for f on [a, b] with
basis B if −m is an (SCP)–major function for −f on [a, b] with basis B. The
usual Perron-type definitions now produce an integral. If

I = inf M(b) = sup m(b)

where the infimum is taken over all (SCP)–major functions M for f and the
supremum is taken over all (SCP)–minor functions m for f then f is said to
be (SCP)–integrable on [a, b] with basis B and we write

I = (SCP,B)
∫ b

a
f(x) dx.

Reference to the basis may be suppressed with the understanding that some
set of full measure in [a, b] is to be employed.

The justification for this integral requires an appeal to a monotonicity
theorem. This is supplied by the following lemma.
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LEMMA 57 Let F be continuous function on an interval [a, b], suppose
that D2 F (x) ≥ 0 a.e. in (a, b), D2 F (x) > −∞ except on a countable set N
and

lim inf
h→0+

∆2
sF (x, h)/h ≥ 0

at each point of N . Then F is convex.

PROOF. This can be proved as in [1, Vol. II, p. 344] or [46, Vol. I, p. 328].

Applied to the difference M−m of a pair of major and minor functions in
this sense this lemma shows that

∫

(M −m) is convex and hence that M −m
is equivalent to a nondecreasing function and so, in particular, nondecreasing
on the basis B.

It can be shown (see [11]) that if f is (SCP,B)–integrable on [a, b] then f
is (SCP,B)–integrable on [a, x] for all a < x ≤ b, x ∈ B. The function

G(x) = (SCP,B)
∫ x

a
f(t) dt

is called the (SCP)–indefinite integral of f and is defined almost everywhere.
Let us begin our study by dispensing immediately with the exceptional

sets. Normally in Perron theories these exceptional sets are irritating to deal
with and can be removed from the theory with no loss of generality. For the
purposes of this lemma only we shall call a function M a strong (SCP)–major
function for f on [a, b] with basis B if

1. M(a) = 0.

2. M is (C)–continuous in B.

3. SCD M(x) ≥ f(x) for every a < x < b.

A strong (SCP)–minor function is similarly defined. Note that a strong
(SCP)–major function is certainly a (SCP)–major function in the ordinary
sense. The integral that results from using this definition can be called a
strong (SCP)–integral. As a result of the lemma we now prove we may
always take (SCP)–major/minor functions as strong.

LEMMA 58 The strong (SCP)–integral and the ordinary (SCP)–integral
are equivalent.
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PROOF. It is clear that the ordinary (SCP)–integral includes the strong
version. Suppose that f is (SCP)–integrable (ordinary sense) on [a, b]. Let
ǫ > 0. Take any major/minor functions M and m in this sense with M(b)−
m(b) < ǫ/3. Let C be the set of points x ∈ (a, b) where either SCD M(x) =
−∞ or SCD m(x) = +∞. By definition C is countable. Let E be the
set of points x ∈ (a, b) where either f(x) > SCD M(x) > −∞ or f(x) <
SCD m(x) < +∞. By definition |E| = 0.

We use Lemma 9 applied to the countable set C to obtain a convex
function K on an interval containing [a, b] so that ΛK(a, b) < ǫ/6 and so that

∆2
sK(x, h) ≥ f(x)h2 − Θ2

sM(x, h)

and
∆2

sK(x, h) ≥ Θ2
sm(x, h) − f(x)h2

for x ∈ C and sufficiently small h. Since C is countable and M and m are
(SC)–semicontinuous at each point of C this allows us to apply Lemma 9.
Now define a monotonic function K1 so that K1(a) = 0, K1(b) < ǫ/6 and
K(x) =

∫ x
a K1(t) dt. We can insist that the function K1 is (C)–continuous at

a and b by subtracting appropriate linear functions from K and choosing the
values K1(a) and K1(b) correctly.

Similarly we use Lemma 7 applied to the measure zero set E to obtain a
convex function H on an interval containing [a, b] so that ΛH(a, b) < ǫ/6 and
so that

∆2
sH(x, h) ≥ f(x)h2 − Θ2

sM(x, h)

and
∆2

sH(x, h) ≥ Θ2
sm(x, h) − f(x)h2

for x ∈ E and sufficiently small h. Again define a monotonic function H1 so
that H1(a) = 0, H(x) =

∫ x
a H1(t) dt and H1(b) < ǫ/6; we can require H1 to

be (C)–continuous at a and b.
Write M1(x) = M(x) + K1(x) + H1(x) and m1(x) = m(x) − K1(x) −

H1(x). It is straightforward now to verify that M1 and m1 are a major/minor
function pair for f in the strong sense.

Moreover M1(b)−m1(b) = M(b)−m(b)+2K1(b)+2H1(b) < ǫ. From this
it is clear that the integrability of f in the ordinary (SCP)–sense requires f
to be integrable in the narrower sense too as required.

The following variational characterization of the (SCP)–integral is the
key to establishing the relation to the variational theory given here. This
follows a standard procedure known for most Perron type integrals.
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LEMMA 59 A finite function f defined everywhere on an interval (a, b) is
(SCP)–integrable on [a, b] with an indefinite integral G if and only if

1. G(a) = 0.

2. G is (C)–continuous a.e. in (a, b) and at a and b.

3. G is (SC)–continuous in (a, b).

4. G is Denjoy-Perron integrable in [a, b].

5. for every ǫ > 0 there is nonnegative, increasing function L that is (C)–
continuous at a and b with L(a) = 0, L(b) < ǫ so that

∣

∣

∣Θ2
sG(x, h) − f(x)h2

∣

∣

∣ < Θ2
sL(x, h)

for each a < x < b and all sufficiently small h > 0.

PROOF. The conditions are sufficient. If (1)–(5) hold then using successively
ǫ = 1, 1/2, 1/3, . . .1/n there is a sequence of such functions Ln. Write Mn =
G + Ln and mn = G−Ln. For the basis take B as the set of points where G
is (C)–continuous and all Ln are too.

Clearly Mn(a) = mn(a) = 0, mn(x) ≤ G(x) ≤ Mn(x) almost everywhere
and Mn(b) − mn(b) < 1/n. Both Mn and mn are (C)–continuous in B.
Condition (5) ensures that

Θ2
sG(x, h) − Θ2

sLn(x, h) < f(x)h2 < Θ2
sG(x, h) + Θ2

sLn(x, h)

at each x and for sufficiently small h > 0; it follows that SCD Mn(x) ≥ f(x) ≥
SCD mn(x) at each x. Thus Mn and mn form sequences of major/minor
function pairs for f and the integrability of f follows with an indefinite
integral G defined on B.

The conditions are also necessary. Suppose f is (SCP)–integrable on [a, b]
with an indefinite integral G. Conditions (1)–(4) for G are straightforward
and well known. For example for (3) the function G is the limit of a sequence
of (SC)–lower semicontinuous functions and a sequence of (SC)–upper semi-
continuous functions. The integrals can be shown to converge uniformly and
so the function G is itself (SC)–continuous in (a, b).

We show now that (5) holds too. Let ǫ > 0. Let M and m be any (SCP)–
major and minor functions for f on [a, b] with M(b) − m(b) < ǫ/2. Because
of Lemma 58 we may take these as strong major/minor functions.
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We note that the functions M −G and G−m are nondecreasing (i.e. they
are a.e. equivalent to nondecreasing functions). In particular then

Θ2
sM(x, h) ≥ Θ2

sG(x, h) ≥ Θ2
sm(x, h).

Write
L(x) = M(x) − m(x) + c(x − a)

where 2c(b−a) = ǫ. Clearly L is equivalent to a monotonic function, L(a) = 0
and L(b) = M(b)−m(b)+c(b−a) < ǫ. We can extend L so as to be monotonic
on [a, b] and it will be (C)–continuous at a and b.

We show that L satisfies the rest of the statement in (5). Suppose that
x ∈ (a, b). Then, since M and m are (strong) major/minor functions for f ,
SCD M(x) ≥ f(x) ≥ SCD m(x); it follows that, for small enough h,

Θ2
sm(x, h) − ch2 < f(x)h2 < Θ2

sM(x, h) + ch2

and so
|f(x)h2 − Θ2

sG(x, h)| < Θ2
sL(x, h).

exactly as required to verify (5). This completes the proof.

This lemma translates immediately into the language of the previous
sections and places the (SCP)–integral in that context.

THEOREM 60 A function f defined everywhere on an interval (a, b) is
(SCP)–integrable on [a, b] if and only if there is a continuous, ACG∗ function
F on [a, b] with finite one-sided derivatives F ′

+(a) and F ′
−(b) at the endpoints

of the interval so that ∆2
sF ≡ f(∆ℓ)2 on (a, b). If so then

(SCP)
∫ b

a
f(t) dt = F ′

−(b) − F ′
+(a)

and the set of points

B = {a} ∪ {b} ∪ {x ∈ (a, b); F ′(x) exists }

may be taken as the basis.

Trivially we see now that any SCP–integrable function is integrable in
both the P2 and V2

s senses. The relation with the (V2
s)–integral and the P2–

integral is now immediate; we express these statements as corollaries. The
basis plays no role and need not be explicitly mentioned. Corollary 62 is just
Theorem I of [14].
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COROLLARY 61 Suppose that a function f is (SCP)–integrable on an
interval [a, b]. Then f is (V2

s)–integrable on [a, b] and

(V2
s)
∫ b

a
f(t) dt = (SCP)

∫ b

a
f(t) dt.

COROLLARY 62 Suppose that a function f is (SCP)–integrable on an
interval [a, b]. Then f is P2–integrable on [a, b]. If G is an indefinite (SCP)–
integral for f then

F (x) =
∫ x

a
G(t) dt − x − a

b − a

∫ b

a
G(t) dt

is a second indefinite integral for f in the P2–sense on [a, b].

A converse from the P2 or V2
s integrals to the (SCP)–integral just requires

that the second order primitive for f satisfy some extra conditions. Viewed in
the statement of Theorem 60 the requirement that the primitive be an ACG∗

function might be considered entirely arbitrary; the intention is that the
primitive be the integral of its derivative. This could well be interpreted in the
narrower sense of the Lebesgue integral (in which case F should be absolutely
continuous) or in the broader sense of the Denjoy-Khintchine integral (in
which case F should be ACG). For applications to trigonometric series the
Lebesgue integral would have sufficed; in the setting of these two integrals
the Denjoy-Khintchine integral would have been more natural. In this regard
see the discussion in Skvorcov [41].

The following examples show the narrowness of the (SCP)–integral. We
have used the first example before in Section 8.

Let F (x) = x
√

1 − x2 on the interval [−1, 1]. Then while the integral

(V2
s)
∫ 1

−1
F ′′(t) dt

exists this function cannot be integrable in the (SCP)–sense on [−1, 1]. While
this example is perhaps rather artificial this feature does have some impor-
tance. As we shall see in Section 13 a function f that is everywhere the sum
of a convergent trigonometric series will be V2

s–integrable over any period
[a, a + 2π]. The best that can be said if one uses the (SCP)–integral is that
the function is (SCP)–integrable over a period [a, a + 2π] for almost every
value of a. It is because the V2

s–integral exploits the symmetry available that
the improved statement is possible.
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The final example we shall merely cite. Skvorcov [43] has given an exam-
ple of a continuous function F that has everywhere a second order symmetric
derivative D2 F (x) = f(x) and yet F is not ACG∗. Then f is P2–integrable
and also V2

s–integrable on [a, b] for any a and b at which F ′ exists (this is
almost everywhere) but f is not (SCP)–integrable because F ′ is not Denjoy-
Perron integrable. (In this particular example F is ACG and so F ′ is inte-
grable in the more general Denjoy-Khintchine sense and this leaves open the
question as to whether an improved version of the (SCP)–integral using the
Denjoy-Khintchine integral in place of the Denjoy-Perron integral would be
as far removed from the P2 and V2

s–integrals.)

11 Mař́ık’s integration by parts formula

The usual integration by parts formula of the calculus can be considered an
interpretation of the differentiation formula (fg)′ = f ′g+fg′ in an integration
setting. Most integration by parts formulas, even for generalized integrals,
continue the same theme. Mař́ık’s version for the second order symmetric
integrals might be viewed instead as an interpretation of the differentiation
formula

(GF ′ − G′F )′ = GF ′′ − G′′F.(37)

The next three lemmas provide the key to the integration by parts for-
mula. Note that the equivalence relation expressed in (41) is essentially the
differentiation relation in (37).

LEMMA 63 Let

H(x) =
∫ x

a
G(t) dF (t) −

∫ x

a
F (t) dG(t)(38)

where F is continuous and G′ is Lipschitz on [a, b]. Then, for each x ∈ (a, b),

∆2
sH(x, h) = G(x)∆2

sF (x, h) − F (x)∆2
sG(x, h)(39)

+ 2G′(x)M2
sF (x, h)h2 + o(h2)

as h → 0+.

PROOF. The proof is from [35, (109), p. 63], reproduced here since the
original is unpublished. Fix x ∈ (a, b) and h > 0. We can assume that
F (a) = 0. An integration by parts establishes the formula

H(x) = F (x)G(x) − 2
∫ x

a
F (t)G′(t) dt
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so that
∆2

sH(x, h) =

∆2
sFG(x, h) − 2

∫ h

0
(F (x + t)G′(x + t) − F (x − t)G′(x − t)) dt

For convenience this expression can be simplified by writing

Ω(f, g) = ∆2
sfg(x, h) − 2

∫ h

0
(f(x + t)g′(x + t) − f(x − t)g′(x − t)) dt

which is linear in f and g separately. Set F (x) = α, G(x) = β, G′(x) = γ,
F1 = F − α, L(t) = t − x and G1 = G − β − γL. Then

Ω(F, G) = Ω(F, G1) + Ω(F, β + γL)

and so

∆2
sH(x, h) = Ω(F1, G1) + αΩ(1, G1) + βΩ(F, 1) + γΩ(F, L).(40)

Now we can check directly that Ω(F, L) = 2h2M2
sF (x, h), that Ω(1, G1) =

−∆2
sG(x, h) and that Ω(F, 1) = ∆2

sF (x, h) . The remaining term Ω(F1, G1)
must be shown to be o(h2) as h → 0+. Since F1 is continuous, F1(x) = 0,
G1(x) = G′

1(x) = 0 and G′′ is bounded we easily show that

F1(x + t)G1(x + t) = o(t2)

and that
∫ t

0
F1(x + s)G′

1(x + s) ds = o(t2)

as t → 0+ or t → 0−. Together this shows that Ω(F1, G1) = o(h2) as
h → 0+ as we wished to prove. Now these computations along with (40)
provide (39) and the lemma is proved.

LEMMA 64 Let H be defined as in (38) where F is continuous and G′

is Lipschitz on [a, b] and suppose that F has a finite symmetric derivative at
every point of a set E ⊂ (a, b). Then

∆2
sH ≡ G∆2

sF − F∆2
sG(41)

on E.
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PROOF. By Lemma 3, M2
sF (x, h) = o(1) as h → 0+ for each x ∈ E. It

follows then that
2G′(x)M2

sF (x, h)h2 = o(h2)

as h → 0+. Now (41) follows immediately from Lemma 63 and Lemma 8.

LEMMA 65 Let H be defined as in (38) where F is continuous and G′ is
Lipschitz on [a, b] and suppose that

lim sup
h→0+

|M2
sF (x, h)| < +∞

at every point of a set E ⊂ (a, b) where E has measure zero. Then (41)
holds on E.

PROOF. Write
ξ(x, h) = 2G′(x)M2

sF (x, h)h2.

As M2
sF (x, h) = O(1) as h → 0+ for x ∈ E and E has measure zero it

follows from Theorem 24 that ξ∗(E) = 0. Now once again (41) follows from
Lemma 63 and Lemma 8.

THEOREM 66 (Mař́ık) Let f be (V2
s)–integrable on [a, b] with a second

primitive F . Let H be defined as in (38) where G′ is Lipschitz on [a, b].
Suppose that

lim sup
h→0+

|M2
sF (x, h)| < +∞(42)

at nearly every point of (a, b) and that ΛH(a, b) exists. Then fG is (V2
s)–

integrable on [a, b] and

(V2
s)
∫ b

a
f(t)G(t) dt = ΛH(a, b) +

∫ b

a
F (t)G′′(t) dt

where the latter integral is a Lebesgue integral.

PROOF. Let N denote the countable set of points in (a, b) at which (42)
fails. We know that F is almost everywhere differentiable in (a, b) and so
Lemma 64 and Lemma 65 together show that

∆2
sH ≡ G∆2

sF − F∆2
sG
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in (a, b) \ N . In fact we shall show that this equivalence relation holds on
(a, b); it is just a matter of handling this countable exceptional set.

By Theorem 47 the function F is smooth and so, since N is countable,
∆2

sF
∗(N) = 0. It is clear that G is also smooth so that, for the same reason,

∆2
sG

∗(N) = 0. We show that H is smooth. An integration by parts yields

H(x) = F (x)G(x) − 2
∫ x

a
F (t)G′(t) dt.(43)

The product of a smooth function (F ) and a differentiable function (G)
is smooth; an indefinite integral with a continuous integrand is smooth.
Thus the smoothness of H is clear from (43) and we may conclude that
∆2

sH
∗(N) = 0. Now ∆2

sH ≡ G∆2
sF − F∆2

sG in (a, b) follows.
The relation ∆2

sF ≡ f(∆ℓ)2 on (a, b) holds because f is integrable and
F is its second primitive. As G is bounded it is easy to see that G∆2

sF ≡
fG(∆ℓ)2 on (a, b) holds too. Since G′′ is integrable ∆2

sG ≡ G′′(∆ℓ)2 and so,
since F is bounded too, F∆2

sG ≡ FG′′(∆ℓ)2 on (a, b) holds. Thus we have
fG(∆ℓ)2 ≡ ∆2

sH + FG′′(∆ℓ)2 in (a, b). The final assertion of the theorem
now follows from this equivalence relation and the existence of ΛH(a, b).

In the statement of this theorem we have required the existence of the
expression ΛH(a, b) in order to claim the existence of the integral. Indeed
this may not exist so that a product fG may fail to be integrable even if G is
linear. This reflects the fragile nature of the integral here in that its existence
may arise from a symmetry that a multiplication can destroy. An example
(from [35, (119), p. 69]) illustrates: take F (x) as in (33) and G(x) = x.
Then with H as in (43) it can be shown that ΛH(−1, 1) does not exist.
Consequently F ′′G is not integrable on [−1, 1].

The corollary we now prove gives an instance when ΛH(a, b) must exist
and so the hypotheses are simpler. Again this is due to Mař́ık [35, (116),
p. 68]) .

COROLLARY 67 Let f be (V2
s)–integrable on [a, b] with a second primitive

F . Suppose that G′′ is bounded and integrable on [a, b]. Suppose that

lim sup
h→0+

|M2
sF (x, h)| < +∞

at nearly every point of (a, b) and that G(a) = G(b). Then fG is (V2
s)–

integrable on [a, b] and

(V2
s)
∫ b

a
f(t)G(t) dt = G(a)

∫ b

a
f(t) dt
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− (F (b)G′(b) − F (a)G′(a)) +
∫ b

a
F (t)G′′(t) dt

where the latter integral is a Lebesgue integral.

PROOF. As before let H be defined as in (38). The corollary will follow
from the theorem once we prove that ΛH(a, b) exists and establish that

ΛH(a, b) = G(a)ΛF (a, b) − (F (b)G′(b) − F (a)G′(a)) .(44)

An integration by parts shows that

H(x) = F (x)G(x) − F (a)G(a) − 2
∫ x

a
F (t)G′(t) dt.

It follows that

ΛH(a, b) = ΛFG(a, b) − 2 (F (b)G′(b) − F (a)G′(a)) .

and this together with equation (14) yields (44).

12 Burkill’s integration by parts formula

The title of this section refers to an integration by parts formula for the
(SCP)–integral which Burkill claimed for his integral but neglected to prove.
In [11] he appeals to one of his earlier papers [9] saying that a proof can
be constructed as for the CP–integral “with some modification of detail”.
Subsequently it was pointed out that the proof does not follow in the same
way because (SCP)–major and minor functions are C–continuous only almost
everywhere while, to adapt the proof, C–continuity would be needed except
on a countable set. The difficulty surfaces in the analogue of [9, Lemma 2]
and its corollary. For if SCDF (x0) = f(x0), G′(x) = g(x), and g(x) is
bounded near x = x0 then it is not true that, for x = x0,

SCD Fg ≥ Fg + fG.

An example of Lee [30] shows this. Take F (x) = x−1/2 for x > 0, F (x) =
(−x)−1/2 for x < 0, F (0) = K and G(x) = −x. Then

SCD FG(0) = −∞ 6= K = F (0)G′(0) + G(0)SCD F (0).
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This error plays no important role in the original paper since the main
theorem on the representation of trigonometric series can be proved by using
the theory of the formal multiplication of trigonometric series rather than
appealing, as Burkill did, to an integration by parts formula. (Burkill would
certainly have been aware of this since he modeled his paper after the arti-
cle [34] where this method had been used.) Even so the problem of Burkill’s
integration by parts formula has somewhat plagued several specialists in the
area. In 1980 Skljarenko [39] proved that Burkill’s original formula is valid
under the original hypotheses in [11] but the proof is long and the calculations
are very complicated.

We can simplify the calculations to some degree by making the integration
by parts formula follow as a consequence of the Mař́ık formula; this we shall
present below. As a start towards this notice first that by making a stronger
assumption than that used in [11] or [39] we obtain a simple version of the
integration by parts formula for the (SCP)–integral.

THEOREM 68 Let f be (SCP)–integrable on [a, b], let F1 be its (SCP)–
primitive and let F be an indefinite integral of F1. Suppose that G′ is Lips-
chitz on [a, b] and that

lim sup
h→0+

|M2
sF (x, h)| < +∞(45)

at nearly every point of (a, b). Then fG is (SCP)–integrable on [a, b] and

(SCP)
∫ b

a
f(t)G(t) dt = F1(b)G(b) − F1(a)G(b) −

∫ b

a
F1(t)G

′(t) dt(46)

where the latter integral exists in the Denjoy-Perron sense.

PROOF. Recall that, under the assumptions here, F is ACG∗, F ′(a) = F1(a)
and F ′(b) = F1(b). As in Theorem 66 let

H(x) =
∫ x

a
G(t) dF (t) −

∫ x

a
F (t) dG(t).

We show that ΛH(a, b) exists. Note first that H = FG − 2
∫

F dG = FG −
2
∫

FG′ by an integration by parts. Then, since all the derivatives must exist,

ΛH(a, b) = (FG)′]
b
a − 2 FG′]

b
a = F ′G − FG′]

b
a(47)
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also exists. Also an integration by parts shows that

∫ b

a
F (t)G′′(t) dt =

∫ b

a
F (t) dG′(t)

= FG′]
b
a −

∫ b

a
G′(t)F1(t) dt(48)

where the latter integral must be interpreted in the Denjoy-Perron sense.
Using Theorem 66 we have the formula

(V2
s)
∫ b

a
f(t)G(t) dt = ΛH(a, b) +

∫ b

a
F (t)G′′(t) dt.

Because of (47) and (48) this immediately supplies (46) at least if the first
integral is interpreted as a V2

s–integral. The proof is complete as soon as we
see that it is in fact an (SCP)–integral. The second order primitive function
is

K(x) = H(x) +
∫ x

a

∫ s

a
F (t)G′′(t) dt ds.

We need to show that K is ACG∗ and that the one-sided derivatives K ′
+(a)

and K ′
−(b) exist. The existence of the derivatives is clear from this and the

formula H = FG − 2
∫

FG′ given above; since F is assumed to be a second
primitive for f it has one-sided derivatives at a and b and G is continuously
differentiable. From the same relation we see that FG, as a product of
ACG∗ functions, must be ACG∗ too; it follows that H and hence also K are
ACG∗. Thus fG is (SCP)–integrable on [a, b] and the integral has the value
K ′

−(b) − K ′
+(a) which provides the desired integration by parts formula.

Let us now turn to the more difficult task of obtaining the formula (46)
without using the condition (45). The proof depends on a series of com-
putations given in Skljarenko [39] which we reproduce here without proofs.
The first two are relatively elementary and straightforward. It is the third
lemma (Lemma 71) that contains the deepest work; its proof takes five pages
in [39, pp. 573–577].

LEMMA 69 Let F be ACG∗ on an interval [a, b]. Then there is a sequence
of closed sets {Pn} covering [a, b] and a sequence of monotonic, absolutely
continuous functions {mk} such that

|F (x + h) − F (x)| ≤ |mk(x + h) − mk(x)| (x ∈ Pk, x + h ∈ (a, b)).
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PROOF. See [39, Lemma 1, p. 568].

LEMMA 70 Let F be a P2–primitive on [a, b]. Then there is a sequence of
closed sets {Pn} covering [a, b] and a sequence of smooth, convex functions
{τk} such that

|∆2
sF (x, h)| ≤ ∆2

sτk(x, h) (x ∈ Pk, x + h ∈ (a, b)).

PROOF. See [39, Lemma 4, p. 573].

LEMMA 71 Let F be continuous, let m be monotonic and absolutely con-
tinuous and let τ be smooth and convex on [a, b]. Suppose that for a closed
set P ⊂ [a, b]

|F (x + h) − F (x)| ≤ |m(x + h) − m(x)| (x ∈ P , x + h ∈ (a, b))

and
|∆2

sF (x, h)| ≤ ∆2
sτ(x, h) (x ∈ P , x + h ∈ (a, b)).

Then there is a nondecreasing, absolutely continuous function m1 such that

|h(F (x + h) − F (x))| ≤
∫ h

0
(m1(x + t) − m1(x − t)) dt

for x ∈ P , x + h ∈ (a, b)).

PROOF. See [39, Lemma 5, p. 573].

With these lemmas we can now prove the following lemma which is the
key to applying the Mař́ık theory here.

LEMMA 72 Let F be ACG∗ and a P2–primitive on [a, b]. Write

ξ(x, h) = M2
sF (x, h)h2.

Then ξ∗(E) = 0 for every set E ⊂ (a, b) with |E| = 0.

PROOF. Under these hypotheses we can apply Lemmas 69, 70 and 71 to
obtain a sequence of closed sets {Pk} covering [a, b] and a sequence of non-
decreasing, absolutely continuous functions {mk} such that

|h(F (x + h) − F (x − h))| ≤
∫ h

0
(mk(x + t) − mk(x − t)) dt(49)
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for x ∈ Pk, x + h ∈ (a, b).
We write ξ(x, h) = 1

2
ξ1(x, h) + ξ2(x, h) where

ξ1(x, h) = h(F (x + h) − F (x − h))

and

ξ2(x, h) = −
∫ h

0
(F (x + t) − F (x − t)) dt.

Write τk =
∫

mk. The inequality (49) provides ξ1(x, h) ≤ ∆2
sτk(x, h) for

x ∈ Pk. Consequently

ξ∗1(E ∩ Pk) ≤ ∆2
sτ

∗
k (E ∩ Pk)

for any set E. But τk is the integral of a monotonic, absolutely continuous
function and so if |E| = 0 then, by the measure theory of Section 6, τ ∗

k (E) =
0. Thus ξ∗1(E ∩ Pk) = 0 for every set E ⊂ (a, b) with |E| = 0. Hence
ξ∗1(E ∩ Pk) =

∑∞
k=1 ξ∗1(E ∩ Pk) = 0 also.

In a similar way it may be shown that ξ∗2(E) = 0; here the proof is simpler
still and needs only an appeal to Lemma 69. Hence ξ∗(E) = 0 and the lemma
is proved.

We are now able to state and prove the main theorem of this section; the
Burkill-Skljarenko integration by parts formula for the (SCP)–integral.

THEOREM 73 Suppose that f is (SCP)–integrable on an interval [a, b]
with an (SCP)–primitive F1 and suppose that G′ is Lipschitz on [a, b]. Then
fG is (SCP)–integrable on [a, b] and the integration by parts formula (46)
holds.

PROOF. Let F be an indefinite integral of F1 and write

ξ(x, h) = M2
sF (x, h)h2

and
ξ1(x, h) = 2G′(x)M2

sF (x, h)h2 = 2G′(x)ξ(x, h).

If E is the set of points at which F ′ does not exist then |E| = 0 and so, by
Lemma 72, ξ∗(E) = 0. As G′ is bounded it follows easily that ξ∗1(E) = 0 too.

The remainder of the proof is now identical with that for Theorem 66
except now we use the observations above to handle the exceptional set where
F ′ does not exist.
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13 An application to trigonometric series

Recall the following standard summability method. For any trigonometric
series

a0/2 +
∞
∑

n=1

(an cos nx + bn sin nx)(50)

the Riemann function for the series is defined as

F (x) = a0x
2/4 −

∞
∑

n=1

(an cos nx + bn sin nx)/n2(51)

obtained by formally integrating the series twice. For example if the coef-
ficients in the original series (50) are bounded the series (51) converges
uniformly and so the Riemann function exists and is continuous. On the as-
sumption that this function exists then the number c is said to be the sum of
the original series by the Riemann method if D2 F (x) = c. If the series (50)
is convergent in the ordinary sense and has sum c then the Riemann method
gives the same value (see [46, Vol I, p. 319]).

Our theorem asserts that, under certain broad conditions, a series will be
Riemann summable almost everywhere and will be the (V2

s)–Fourier series of
its sum. In this form it is properly attributed to Mař́ık [35] and includes a
number of similar theorems by Burkill, James and Marcinkiewicz and Zyg-
mund. If the partial sums of a trigonometric series are bounded at every
point (rather than at nearly every point as here) then the Riemann function
for the series is smooth. The idea of allowing a countable exceptional set but
assuming that the Riemann function is smooth is due to Zygmund (see his
remark in [46, Vol II, p. 91]).

THEOREM 74 (Mař́ık) Suppose that the partial sums of the trigono-
metric series (50) are bounded at nearly every point and that the Riemann
function for the series is smooth. Then the series has a finite sum f(x) by the
Riemann method of summation at almost every point x, f is (V2

s)–integrable
on any period [a, a + 2π] and the series is the Fourier series for f in this
sense, i.e. for each n

πan = (V2
s)
∫ 2π

0
f(t) cosnt dt

and

πbn = (V2
s)
∫ 2π

0
f(t) sinnt dt.
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PROOF. (cf. [35, (126), p. 74]) Since the partial sums are n.e. bounded the
coefficients of the series must be bounded (see [46, Vol. I, p. 317]). Thus the
function

F1(x) =
∞
∑

n=1

(an cos nx + bn sin nx)/n2

is defined everywhere and continuous. Clearly F (x) = a0x
2/4 − F1(x) is the

Riemann function for (50). Note that F1 is smooth (by hypothesis) and so,
by (12), ΛF1

(a, a + 2π) = 0 for any a. At every point x where the partial
sums of the series (50) are bounded we know that ∆2

sF1(x, h) = O(h2)
(see [46, Vol. I, p. 320]). Consequently F1 has a second symmetric derivative
D2 F1(x) = f1(x) that exists almost everywhere (by Theorem 48).

Translating these facts to the Riemann function we have that F is con-
tinuous, smooth, ΛF (a, a+2π) = a0π, ∆2

sF (x, h) = O(h2) nearly everywhere
and D2 F (x) = a0/2 + f1(x) = f(x) exists almost everywhere. By definition,
the series has a finite sum f(x) by the Riemann method of summation at
almost every point x and (by Theorem 48) f is V2

s–integrable over any period
with

(V2
s)
∫ 2π

0
f(t) dt = πa0.

This gives the Fourier formula for a0.
The remaining coefficients we obtain from the integration by parts for-

mula of Theorem 66. Fix a natural number m and write G(x) = cos mx.
Note that G′ is Lipschitz, G(0) = G(2π) and ΛF1

(0, 2π) = 0. By Theorem 5
M2

sF1(x, h) is bounded. This supplies all the conditions needed to obtain the
integration by parts formula

∫ 2π

0
f1(t)G(t) dt =

∫ 2π

0
F1(t)G

′′(t) dt = amπ.

Applying this to f we obtain

(V2
s)
∫ 2π

0
f(t) cos mt dt =

∫ 2π

0
(f1(t) + a0/2)G(t) dt = πam.

The formulae for the Fourier sine coefficients are similarly obtained and so
the theorem is proved.

Note that while the above theorem has been expressed for the V2
s–integral

it can be reformulated for the narrower (SCP)–integral because of the fact
that under these hypotheses the once integrated series is a Lebesgue–Fourier
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series; if F is the Riemann function then it is the Lebesgue integral of F ′

and so even absolutely continuous. We can equally use the (P2)–integral but
then the formula for the coefficients has to be reformulated. The next two
corollaries express these observations.

COROLLARY 75 Under the same conditions as the theorem there is a
set of full measure B so that b + 2π ∈ B whenever b ∈ B, f is (SCP)–
integrable on any interval [a, b] (a, b ∈ B) and the coefficients of the series
are determined by the formulae

πan = (SCP)
∫ b+2π

b
f(t) cosnt dt , πbn = (SCP)

∫ b+2π

b
f(t) sinnt dt

for any b ∈ B.

PROOF. If F is the Riemann function for (50) then F is absolutely contin-
uous. Write B1 = {x; F ′(x) exists} and B =

⋂∞
n=1 B1−2nπ. By Theorem 60

the V2
s–integral reduces to the (SCP)–integral on any interval [a, b] (a, b ∈ B).

COROLLARY 76 Under the same conditions as the theorem f is (P2)–
integrable on any interval and the coefficients of the series are determined by
the formulae

an = − 1

π2

∫

−2π,2π,0
f(t) cos nt dt , bn = − 1

π2

∫

−2π,2π,0
f(t) sinnt dt.

PROOF. (cf. [46, Vol. II, pp. 89–90]) If F is the Riemann function for (50)
then by the theorem ∆2

sF = f(∆ℓ)2 on any interval. The formula for the
coefficients now follows from Corollary 56 relating the V2

s–integral to the
(P2)–integral.

A further corollary allows one to integrate a trigonometric series. Re-
call that the Lebesgue function of a trigonometric series (50) is the once
integrated series

L(x) = a0x/2 +
∞
∑

n=1

an sin nx − bn cos nx

n
.(52)
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COROLLARY 77 Suppose that the partial sums of the trigonometric se-
ries (50) are bounded at nearly every point and that an, bn → 0. Let B
denote the set of points at which the Lebesgue function (52) for the se-
ries (50) exists. Then the series has a finite sum f(x) by the Riemann
method of summation at almost every point x, B has full measure in any in-
terval and f is (V2

s)–integrable (and (SCP)–integrable) on any interval [a, b]
(a, b ∈ B). The integral can be expressed as

(V2
s)
∫ b

a
f(t) dt = a0(b − a)/2 +

∞
∑

n=1

an(sin nb − sin na) − bn(cos nb − cos na)

n
.

PROOF. Since an, bn → 0 the Riemann function for the series is smooth.
The existence of the Lebesgue function L(x) a.e. is well known ([46, Vol. I,
p. 321]). Now if F is the Riemann function for (50) then ΛF (a, b) = F ′(b)−
F ′(a) = L(b) − L(a) (see, for example, [34, Lemma 31, p. 41]) and the
corollary follows.

The final corollaries are stated so as to display conditions under which
the assumed smoothness of the Riemann function may be dropped. In each
case the conditions are known to be sufficient in order that the Riemann
function be smooth everywhere. The needed material may be found in [35,
pp. 76–81] and [46, Vol. I, Chap. 9, 11]. See also Zygmund’s remark in [46,
Vol. II, p. 91].

COROLLARY 78 Suppose that the partial sums of the trigonometric se-
ries (50) are bounded at every point. Then the series is the V2

s–Fourier
series for its Riemann sum.

COROLLARY 79 Suppose that the partial sums of the trigonometric se-
ries (50) are bounded at nearly every point and

n
∑

k=1

k
√

a2
k + b2

k = o(n)

as n → +∞. Then the series is the V2
s–Fourier series for its Riemann sum.

COROLLARY 80 Suppose that the trigonometric series (50) converges
at nearly every point. Then the series is the V2

s–Fourier series for its sum.
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The conditions given in the theorem are not sufficient as they stand
to guarantee that the Riemann function is necessarily smooth. Mař́ık [35,
pp.76–81] (cf. also [46, Vol. II, p. 91]) supplies the example

∑∞
n=1 cos nx to

show that the smoothness of F must be assumed in the statement of the theo-
rem. The Riemann function for this series is not smooth but it is particularly
simple,

F (x) = −x2

4
+

πx

2
− π2

6
(0 ≤ x ≤ 2π).

Clearly the series is not a V2
s–Fourier series of F ′′. Here

sup
N

∣

∣

∣

∣

∣

N
∑

n=1

cos nx

∣

∣

∣

∣

∣

< +∞

for 0 < x < 2π and the series satisfies all the other hypotheses of the the-
orem. Curiously the theorem does apply to the conjugate series; in fact
∑∞

n=1 sin nx is the V2
s–Fourier series of f(x) = 1

2
cot x

2
(0 < x < 2π). In this

case even though f is not Lebesgue integrable the formulae for its Fourier
coefficients uses only the Lebesgue integrable functions f(x) sin nx and so
this is a generalized Fourier sine series in the sense of Zygmund [46, Vol. I,
p. 48].

14 Some further applications

The theory of the symmetric integrals allows a number of classical results in
the study of trigonometric and Fourier series to be interpreted in a particu-
larly simple way. Both of the theorems in this section are relatively routine
applications of the integration theory that we have presented. Of course
these theorems can be proved without developing quite this much technical
apparatus but they become more transparent and natural in this setting. For
example the first theorem (Theorem 81) originally due to W. H. Young can
be proved from the fact that a continuous, smooth function with a second
symmetric derivative nearly everywhere zero must be linear; the proof here
merely uses the V2

s–Fourier coefficients.

THEOREM 81 (Young) Suppose that the trigonometric series (50) con-
verges nearly everywhere to zero. Then the coefficients must all vanish.
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PROOF. Let f(x) denote the sum of the series. By Theorem 74 the series
is the V2

s–Fourier series for f and so the coefficients must vanish.

THEOREM 82 (de la Vallée Poussin) Suppose that the trigonometric
series (50) has bounded partial sums sn(x) at nearly every point and that
an, bn → 0. Write s(x) = lim supn→∞ sn(x) and s(x) = lim infn→∞ sn(x). If
both s and s are Lebesgue [Denjoy–Perron] integrable then the series is the
Fourier series of f = D2 F in that sense where F is the Riemann function
for the series.

PROOF. (cf. [46, Vol. I, Theorem (3.19), p. 328]) By Theorem 74 the series
is the V2

s–Fourier for f = D2 F which exists almost everywhere. By [46,
Vol. I, Theorem (2.7), p. 320]) f(x) is almost everywhere contained between
the values

1

2
(s(x) + s(x)) ± 1

2
k(s(x) − s(x))

for some k and so f must be integrable in the same sense in which these
functions are integrable.

Note that the hypothesis that an, bn → 0 in the statement of the theorem
can be replaced by the assumption that the Riemann function F is every-
where smooth. A corollary expresses a useful special case (cf. [46, Vol. I,
Theorem (3.18), p. 328]).

COROLLARY 83 Suppose that the trigonometric series (50) converges
nearly everywhere to a function f . If f ≥ g where g is Lebesgue [Denjoy–
Perron] integrable then the series is the Fourier series for f in that sense.
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