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Thomson, B. S.
Covering systems and derivates in Henstock division spaces.
J. London Math. Soc. (2) 4 (1971), 103–108.
Author’s introduction: “The theory of division spaces introduced by
R. Henstock [Linear analysis, Plenum, New York, 1967; Proc. London
Math. Soc. (3) 19 (1969), 509–536; MR0251189 (40 #4420)] in order
to simplify and unify certain areas in the theory of integration is
particularly well suited to accommodating various parts of the theory
of covering systems and differentiation. In this paper we present an
introduction to these ideas in a quite general setting. Our approach
involves the elegant idea due to Henstock [Theory of integration,
Butterworths, London, 1963; MR0158047 (28 #1274)] of introducing
a further measure on the space, called the inner variation; proving
various results on derivates which hold almost everywhere with respect
to this measure; and then imposing Vitali conditions to assure that
the measure coincides with the original one.” S. J. Taylor
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Thomson, B. S.
Construction of measures and integrals.
Trans. Amer. Math. Soc. 160 1971 287–296
Let B be a semiring of subsets of a space T . A finite subset D of B×
T whose first elements are pairwise disjoint is a division. Consider a
collection A of subsets S of B×T such that (∅, x) is in every S in A for
every x in T and A is directed downwards by set inclusion. (T,A,B)
is termed a division system. With each real valued function µ on B×
T and every S there is associated a variation V (µ,S) whose value
is the supremum of the sums

∑
|µ(I, x)| for (I, x) in D, a division

contained in S. The infimum of V (µ,S) for S in A is denoted by
V (µ,A). Making suitable hypotheses on the division system (T,A,B)
the author develops a general theory of measure and integration,
using the variation as his principal tool for definition. For example,
the outer measure of a subset X of T generated by µ is V (µ, A[X]),
where A[X] is the collection of S[X] for S in A consisting of those
(I, x) in S for which x is in X. And under suitable restrictions the
integral of a non negative real valued function f on T with respect to
µ is V (fµ,A). P. V. Reichelderfer
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Thomson, B. S.
Constructive definitions for non-absolutely convergent
integrals.
Proc. London Math. Soc. (3) 20 1970 699–716
The author considers a theory of the integral that differs from the
usual convergence factor theory. He presents constructive definitions
of integrals in developments that are carried forward on the basis
of the geometry of the integration process and which rest largely on
considerations of topological properties of various Banach spaces.

W. D. L. Appling

MR0259585 (41 4223) 46.35

Thomson, B. S.
Spaces of conditionally integrable functions.
J. London Math. Soc. (2) 2 1970 358–360
From the author’s introduction: “Let CL(a, b), D∗(a, b) and D(a, b)
denote the linear space of functions that are integrable on the
interval [a, b] in the Cauchy-Lebesgue, Denjoy-Perron and Denjoy-
Hinčin sense, respectively, topologized by the seminorm f →
sup{|

∫ t

a f(ξ) dξ|; a ≤ t ≤ b}, where the integral is in the appropriate
sense; let CL(a, b), D∗(a, b) and D(a, b) be the associated separated
spaces. W. L. C. Sargent [same J. 28 (1953), 438–451; MR0056832
(15,134b)] established several theorems of the Banach-Steinhaus type
for these spaces; from a modern point of view it is evident that these
results may be interpreted as saying that each of the above spaces
is barrelled. In this paper we present a direct proof of this observa-
tion.” B. Yood


