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Thomson, Brian S. (3-SFR)

Vitali coverings and Lebesgue’s differentiation theorem.
(English. English summary)
Real Anal. Exchange 29 (2003/04), no. 2, 957–972.
The author gives a new proof of the well-known Lebesgue differenti-
ation theorem, by considering arbitrary functions which possess the
Vitaly property instead of considering monotonic functions. He also
proves that every continuous monotonic function has the Vitaly prop-
erty on every Borel set. Some characterizations and criteria of the
Vitaly property are also given.

Živorad Tomovski (FMD-SKOPN-IM)

MR1954615 (2004b:28008) 28A15 26A24

Thomson, Brian S. (3-SFR)

Differentiation.
Handbook of measure theory, Vol. I, II, 179–247, North-Holland,
Amsterdam, 2002.
Differentiation is a vast subject and it’s no wonder that Brian Thom-
son’s survey paper is the longest (68 pages) among the articles of
the Handbook of measure theory. The central theme of the paper
around which the material is arranged is that of derivation bases.
Abstract differentiation theory is discussed by several monographs.
Unfortunately, they “require a serious devotion to a viewpoint and
an elaborate language in order to enter their universe” as Thomson
puts it. In other words, they offer abstract schemes that are difficult
to follow and do not seem to be rewarding enough.

In the first half of the paper Thomson offers a fairly simple and
rather general theory of abstract differentiation. Its basic notion is
the covering relation which is simply a set of pairs (I, x), where I is a
subset and x is an element of a given set X. (In the simplest special
case we put X = R and take those pairs (I, x) where I is an interval
and x ∈ I.) By a derivation basis we mean a collection B of covering
relations satisfying certain axioms. These axioms express the condition
that the basis is a filter, has a local structure, and is compatible with
the topology on X if there is given any. (In the simplest special case of
the so-called interval basis we take the collection of covering relations
{(I, x): |I|< δ, x ∈ I} for every δ > 0.)

If a function h is defined on the set of pairs that occur in the
covering relations of the basis then its B lim sup at a point x is
defined as infβ sup(I,x)∈β h(I, x), where β runs through all covering
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relations of the basis. (If h is an interval function then, in the case of
the interval basis we obtain the upper derivative of h.) The B lim inf
of h is defined analogously.

A basic ingredient of the theory is the dual basis B∗ defined in a
natural way. (In the case of the interval basis the dual basis consists
of those covering relations that correspond to all Vitali coverings of
R.) Other notions to be introduced are the variation of h with respect
to the basis and the outer measure induced by the variation.

Now let X be a metric space, let µ be a locally finite Borel measure
on X, and suppose that for every pair (I, x) of the covering relations of
a given basis the set I is a bounded Borel set with 0< µ(I)<∞. Let
f be integrable with respect to µ, and define h(I, x) = 1

µ(I)

∫
I |f(t)−

f(x)| dµ(t). The main result (Theorem 41) of the theory offered by
Thomson states that B limh = 0 holds µ∗-almost everywhere, where
µ∗ is the outer measure induced by the variation of µ with respect to
the dual basis B∗.

This remarkable theorem gives the strongest possible result using
the weakest possible conditions. We have to bear in mind, however,
that under these very general conditions nothing guarantees that
µ∗ = µ or µ∗ 6= 0. If, for example, X = R2 and B is the set of covering
relations βδ where (I, x) ∈ βδ if I is a rectangle of diameter < δ and
x ∈ I, then λ∗ ≡ 0, since, by a classical example due to H. Bohr, the
B-derivative of the integral of an integrable function does not exist in
general.

It is the question whether or not µ∗ = µ holds, where the geometry
of the basis B enters into the discussion. Thomson gives a review
of those conditions that imply this equality and, consequently, the
differentiation of integrals. In this part of the paper he gives a survey
of the literature of the density property, Vitali type covering theorems,
net bases, halo properties, the (Q)-property and the Besicovitch-Morse
property.

Other topics closely related to differentiation are also discussed.
These include the integration of derivatives (Henstock-Kurzweil inte-
gral and its variants), the symmetric derivative, unusual density bases
on R, the approximate derivative, the theorem of de la Vallée Poussin
and the Radon-Nikodým theorem. The list of references of this highly
readable and fascinating article contains 91 items.
{For the entire collection see MR1953489 (2003h:28001)}

M. Laczkovich (H-EOTVO-AN)
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Bruckner, Andrew M. (1-UCSB) ; Thomson, Brian S. (3-SFR)

Real variable contributions of G. C. Young and W. H. Young.
Expo. Math. 19 (2001), no. 4, 337–358.
The authors discuss some of the contributions of W. H. and G. C.
Young to real variable theory. They point out that most of the papers
attributed to W. H. Young alone were in fact joint work with Grace.

Among the topics discussed are: inner limiting sets, now known
as Gδ sets, and the classification of sets arising in analogous ways;
questions about the derivates of functions in a given Baire class; the
unsolved problems of the characterisation of derivatives and whether
the product of two derivatives is a derivative; and the Denjoy-Young-
Saks theorem. The authors also describe later work by other authors.
The Youngs’ work on differentials and semicontinuous functions is
mentioned.

The authors seem to have concentrated on the point-set aspects
of real-variable theory; some other work in the field is omitted; for
instance, the work on integration theory does not appear, nor does
their joint expository paper of 1912 on variants of the Riesz-Fischer
theorem. F. Smithies (Cambridge)
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géometrie différentieille. J. Math. Pures et Appl., (9) 26:115–226,
1947. MR0023897 (9,419c)

19. M. R. Chowdhury. The Schoenflies-Young controversy. Jahangir-
nagar Rev. Part A: Sci. 5 (1981), 13–21 (1983). MR0747907
(86f:01026)

20. E. F. Collingwood. Cluster sets of arbitrary functions. Proc.
Nat. Acad. Science U.S.A., 46:1236–1242, 1960. MR0117338 (22
#8119)



Results from MathSciNet: Mathematical Reviews on the Web
c© Copyright American Mathematical Society 2006

21. E. F. Collingwood and A. J. Lohwater. The Theory of Cluster
Sets. Cambridge University Press, London, 1966. MR0231999 (38
#325)
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73. G. Tolstoff. Sur la dérivée approximative exacte. Rec. Math. (Mat.
Sbornik) N. S., 499–504, 1938. MR0004284 (2,352d)

74. A. J. Ward. On the differential structure of real functions. Proc.
London Math. Soc., 39:339–362, 1935.

75. C. E. Weil. On approximate and Peano derivatives. Proc. Amer.
Math. Soc., 20:487–490, 1969. MR0233944 (38 #2265)

76. L. C. Young. Mathematicians and their times. North-Holland,
New York, 1981. MR0629980 (83h:01006)

77. W. H. Young and G. C. Young. The Theory of Sets of Points (2nd



Results from MathSciNet: Mathematical Reviews on the Web
c© Copyright American Mathematical Society 2006

Edition). Chelsea, New York, 1972.
78. Z. Zahorski. Sur la première derivée. Trans. American Math. Soc.,

69:1–54, 1950. MR0037338 (12,247c)
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MR1778525 (2001h:26014) 26A39 26A45

Thomson, Brian S. (3-SFR)

The space of Denjoy-Perron integrable functions. (English.
English summary)
Real Anal. Exchange 25 (1999/00), no. 2, 711–726.
Let {En} be an increasing sequence of closed sets covering a fixed in-
terval [a, b] of the real line. DP [a, b] denotes the space of all Henstock-
Kurzweil integrable functions f : [a, b]→R, and DP ({En}) the space
of all functions f ∈DP [a, b] such that the primitive F of f is BV∗ (in
the Saks sense) on each set En.

In this paper it is proved that: (1) the sequence of seminorms
pn(f) = Var(F,En) defines on DP ({En}) a metrizable, complete, lo-
cally convex topology T({En}); (2) L∞ is the dual of DP ({En})
endowed with the topology T({En}); (3) the Alexiewicz norm topol-
ogy on DP [a, b] is the finest convex topology such that each of the
canonical injections from the spaces DP ({En}) into DP [a, b] is con-
tinuous. B. Bongiorno (I-PLRM)

MR1704758 (2000g:26006) 26A45 28A12

Thomson, Brian S. (3-SFR)

Some properties of variational measures. (English. English
summary)
Real Anal. Exchange 24 (1998/99), no. 2, 845–853.
Let F be a nonnegative interval function and let E ⊂ [a, b]. The gauge
variation of F on E is the infimum over gauge δ of sup {

∑
τ(ai, bi)} ,

where the supremum is taken over all disjoint collections {(ai, bi)} of
open subintervals of (a, b) for which there is a point ξi ∈ E ∩ (ai, bi)
satisfying the condition bi− ai < δ(ξi).

In this paper it is proved that if the gauge variation of F is σ-finite
on all closed subsets of E that have zero Lebesgue measure, then it is
σ-finite on E. B. Bongiorno (I-PLRM)
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MR1691755 (2000g:28029) 28C10 26A30

Shi, Hongjian (3-SFR) ; Thomson, Brian S. (3-SFR)

Haar null sets in the space of automorphisms on [0, 1].
(English. English summary)
Real Anal. Exchange 24 (1998/99), no. 1, 337–350.
Let G be an arbitrary Polish group. A Borel probability measure µ
on G is called left [resp., right] transverse to a universally measurable
subsetX ofG provided µ(gX) = 0 [resp., µ(Xg) = 0] for all g inG. The
authors give examples to show that these two notions are independent
in the group H[0, 1] of all homeomorphisms h of [0, 1] with h(0) =
0 and h(1) = 1, where the group operation is the composition of
functions and the topology is that of uniform convergence. Moreover,
answering a question of Jan Mycielski (1992), they define a Borel
subset X of H[0, 1] such that there is a Borel probability measure µ
on H[0, 1] which is both left and right transverse to X, but there is
no Borel probability measure ν on H[0, 1] with ν(gXh) = 0 for all g, h
in G. The latter means that X is not Haar null in the sense of J. P.
R. Christensen (1974).

An announcement of the results in this version of the paper appears
in the same volume of the journal in a report of a conference [Real
Anal. Exchange 24 (1998/99), no. 1, 113–116].
{Reviewer’s remarks: (1) In the definition of g on p. 343, “I” should

be replaced by another subinterval of [0, 1]. The definition of g on p.
344 requires a similar modification. (2) The representation of S on p.
345 seems wrong. One should use there the sets (0, 2−n]∩Q, rather
than {2−n: n=m,m+1, · · ·}.} Z. Lipecki (PL-PAW)

MR1609830 (99f:28005) 28A12 26A46

Thomson, Brian S. (3-SFR)

σ-finite Borel measures on the real line. (English. English
summary)
Real Anal. Exchange 23 (1997/98), no. 1, 185–192.
Let f be an ACG∗ function on [a, b] in the sense of S. Saks [Theory
of the integral, Second revised edition. English translation by L. C.
Young.With two additional notes by Stefan Banach, Dover, New York,
1964; MR0167578 (29 #4850)(§8, Chapter VII)]. Given ∅ 6= E ⊂ [a, b]
denote by G(E) the class of all strictly positive, finite functions on E
and, for δ ∈ G(E), put

V (f,E, δ) = sup
∑

|f(bi)− f(ai)|,

where the sup is taken over all collections of nonoverlapping intervals
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[ai, bi] ⊂ [a, b] such that there is an xi ∈ E ∩ [ai, bi] with 0 < bi −
ai < δ(xi). Defining µ∗f (∅) = 0 and µ∗f (E) = inf{V (f,E, δ); δ ∈ G(E)}
for ∅ 6= E ⊂ [a, b], one arrives at a metric outer measure µ∗f whose
restriction to the σ-algebra of Borel subsets of [a, b] is a Borel measure
µ on [a, b] which is shown to enjoy the following properties: (1) There
is a sequence of closed sets Fn ⊂ [a, b] such that µ(Fn) <∞ for each
n and

⋃
Fn = [a, b]; (2) µ is absolutely continuous with respect to

Lebesgue measure; (3) µ(B) = µ∗f (B) =
∫
B |f

′(x)|dx for every Borel
set B ⊂ [a, b]. Conversely, if a Borel measure µ on [a, b] satisfies
(1),(2), then there is an ACG∗ function f on [a, b] such that (3) is
valid, too. J. Král (CZ-AOS)

MR1610467 (99c:26004) 26A24 26A42

Freiling, C. (1-CASSB) ; Rinne, D. (1-CASSB) ;
Thomson, B. S. (3-SFR)

A Riemann-type integral based on the second symmetric
derivative. (English. English summary)
J. London Math. Soc. (2) 56 (1997), no. 3, 539–556.
If F is continuous and at each point x in an interval f(x) = SD2F (x) =
limh→0(F (x+h)+F (x−h)− 2F (x))/h2 exists, the problem motivat-
ing this article is the following: How can one recover F (x) using a
Riemann-style integral? Alternatively, if K = [a, b] and for 0 < p ≤
(a+ b)/2, how can one recover ∆KpF = F (a) + F (b)− F (a+ p)−
F (b− p) using an integral involving partition sums? The solution is a
second-order integral defined on “2-intervals” Kp = ([a, b], [a+ p, b−
p]) involving a gauge, an exceptional set E and a second gauge on E×
N, so that for partitions using “regular” 2-intervals one obtains the
integral I(f,Kp) as a limit of partition sums. Several elaborate, but
straightforward, partitioning arguments for rectangles in the plane
are needed and occur at the beginning of the paper along with a
covering theorem guaranteeing the existence of the required parti-
tions. These are in turn needed to guarantee the uniqueness of the
integral (and its properties). A first-order integral

∫ b

a f is given by
limp→0+ I(f, ([a, b], [a+p, b−p]))/p providing the limit exists. This in-
tegral is more general than the Riemann-complete integral and exists
and can be used to determine the Fourier coefficients of an every-
where convergent trigonometric series when given the limit function
f(x). This, as is asserted at the beginning of the paper, is the prob-
lem which kept SD2F “as an object of study for nearly a century and
a half”. James Foran (1-MOKC)
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MR1426684 (97j:26008) 26A39

Bongiorno, B. (3-SFR) ; Pfeffer, W. F. (3-SFR) ;
Thomson, B. S. (3-SFR)

A full descriptive definition of the gage integral. (English.
English summary)
Canad. Math. Bull. 39 (1996), no. 4, 390–401.
A Kurzweil-Henstock-type sum integrability of a function over a
compact nondegenerate interval (called a cell) in Rn is defined.

Necessary and sufficient conditions are given for a continuous F
defined on the family of all subcells of a cell A⊂Rn to be derivable to
F ′ almost everywhere in A and such that F is the indefinite integral
of F ′. These conditions are given in terms of the critical or essential
critical variation of F and the fact that F belongs to AC∗. In this
way a generalization of the descriptive definition of the Denjoy-Perron
integral to n-dimensional cells is presented. Š. Schwabik (Prague)

MR1407282 (97i:26004) 26A21 26A24

Freiling, C. (1-CASSB) ; Thomson, B. S. (3-SFR)

Scattered sets and gauges. (English. English summary)
Real Anal. Exchange 21 (1995/96), no. 2, 701–707.
As the abstract to this note promises: “An elementary and natural
method for demonstrating that certain exceptional sets are scattered
is presented.” Recall that a set of real numbers is scattered if every
nonempty subset has an isolated point. Likewise, a set is called right
[left] scattered if every nonempty subset has a point isolated on the
right [left]; any such set is called semi-scattered. Finally, a set is
splattered if every nonempty subset has a point isolated on at least
one side. Under various names (e.g., separierte Mengen, clairsemé,
and zertreute Mengen) and sometimes with no name, scattered sets
have found their way into the literature of real analysis for over a
century, occurring as countable exceptional sets to some behavior.
Here the authors provide the following tool: If δ is a gauge function
(i.e., a function into R+) defined on all of R except possibly for
some countable set, then, except for a right [left] scattered set, every
point is the limit from the right [left] of some sequence {xi}, for
which δ(xi) is bounded above zero. They then illustrate how this
tool may be used to provide quite nice proofs of several known
results involving exceptional sets which are scattered, semi-scattered,
or splattered. These include results of T. Viola [Ann. École Norm.
(3) 50 (1933), 71–125; Zbl 007.05901], Z. Charzyński [Fund. Math. 21
(1931), 214–225; Zbl 008.34401], M. J. Evans and L. M. Larson [Acta
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Math. Hungar. 43 (1984), no. 3-4, 251–257; MR0733857 (85h:26005)],
and Freiling [Trans. Amer. Math. Soc. 318 (1990), no. 2, 705–720;
MR0989574 (90g:26003)].
{See also the following review [MR1407261 (97i:26005)].}

Michael Evans (1-WLEE)

MR1407265 (97g:26009) 26A39

Skvortsov, V. A. (RS-MOSC) ; Thomson, B. S. (3-SFR)

Symmetric integrals do not have the Marcinkiewicz property.
(English. English summary)
Real Anal. Exchange 21 (1995/96), no. 2, 510–520.
One of the more surprising results in the Perron integral theory is the
Marcinkiewicz theorem: a function is Perron integrable iff it has one
pair of continuous major and minor functions. This result, which is
in the classic book of Saks, has been extended to the CP-integral and
to the AP-integral. However, in his unpublished thesis, Sklyarenko
showed that the result is false for the SCP-integral; and later the
first author showed that this is also the case for the dyadic Perron
integral. The present interesting paper shows that the Marcinkiewicz
theorem fails for all known Perron integrals defined using symmetric
derivatives; that is, in each case there is a non-integrable function
with a pair of continuous major and minor functions in the sense
of the integral. The authors point out that in all cases where the
theorem fails the associated derivative at a point does not use the
function value at that point. The methods of proof use the idea of
symmetric variation, details of which can be found in the book by the
second author [Symmetric properties of real functions, Dekker, New
York, 1994; MR1289417 (95m:26002)]. P. S. Bullen (3-BC)

MR1407261 (97i:26005) 26A21 54H05

Freiling, C. (1-CASSB) ; Thomson, B. S. (3-SFR)

Scattered sets, chains and the Baire category theorem.
(English. English summary)
Real Anal. Exchange 21 (1995/96), no. 2, 440–458.
Whereas the article by the same authors reviewed immediately
above [Real Anal. Exchange 21 (1995/96), no. 2, 701–707; MR1407282
(97i:26004)] provides a convenient tool for showing that an excep-
tional set in real analysis is scattered, semi-scattered, or splattered,
this interesting companion article presents a much more in-depth
analysis of the structure of such sets.

Fundamental to this analysis are the notions of a chain of open sets
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and its associated scattered set. A chain of open sets is a well-ordered,
possibly transfinite, sequence G0 ⊆ G1 ⊆ G2 ⊆ · · · of open subsets of
R. For each ordinal α, Rα [resp. Lα] denotes the set of finite right
[resp. left] hand endpoints of components of Gα. Then R =

⋃
αRα

[resp. L=
⋃
α Lα] is left [resp. right] scattered. The set R [resp. L] is

called the associated left [resp. right] scattered set of the chain and R∩
L [resp. R∪L] is called the associated scattered [resp. splattered] set
of the chain. The authors show that every set that is scattered [resp.
left scattered, right scattered] is the associated scattered [resp. left
scattered, right scattered] set of some chain. Actually, they establish
an even more detailed analysis of the structure of the set in question
and the above is a corollary. Characterizations of certain splattered
sets are also given.

The authors proceed to show that any application of the Baire
category theorem on the real line leads naturally to a chain of open
sets and hence to an exceptional scattered set. Some applications of
this “scattered Baire theorem” are provided. One interesting example
is the following variation of the Cantor-Bendixson theorem: Every set
can be partitioned into four pieces, the first scattered, the second left
scattered and having no isolated points, the third right scattered and
having no isolated points, and the fourth having only bilateral limit
points. Michael Evans (1-WLEE)

MR1289417 (95m:26002) 26Axx 42A24

Thomson, Brian S. (3-SFR)

FSymmetric properties of real functions. (English. English
summary)
Monographs and Textbooks in Pure and Applied Mathematics, 183.
Marcel Dekker, Inc., New York, 1994. xvi+447 pp. $150.00.
ISBN 0-8247-9230-0
This book is designed to give the reader (who is presumed to know
only the basics of Lebesgue theory) an almost complete picture of
the subject: symmetric real analysis of functions. The text consists
of comments, short insightful proofs and constructions; theorems and
examples involving long proofs are either broken down into lemmas or
are given a reference so the reader can pursue them in the literature.
The author also provides a historical view of the subject matter and
includes a large miscellany of results involving symmetric relations.
An appendix with some material needed for the text, several pages of
problems (49) and an extensive bibliography round out the text.

Generalizations of the ordinary first and second derivatives, the
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first and second symmetric derivatives, are

SDf(x) = lim
t→0

(f(x+ t)− f(x− t))/2t and

SD2f(x) = lim
t→0

(f(x+ t)+ f(x− t)− 2f(x))/t2.

A function is said to be symmetrically continuous at a point x if the
numerator of SDf(x) approaches 0 as t approaches 0; it is said to
be symmetric at x if the numerator of SD2f(x) approaches 0 as t
approaches 0. A natural question which occurs throughout the book
is “To what extent do symmetric concepts behave like the ordinary
ones?” Since the attention given to symmetric real analysis is largely
due to applications to trigonometric series, problems involving such
series are naturally a recurring theme. It is only possible, in a brief
summary, to give a few of the many threads of which this book is
woven.

In Chapter 1, two theorems of Riemann involving trigonometric
series are given credit for originating and motivating the study of the
second symmetric derivative. These lead naturally to theorems which
give conditions guaranteeing the linearity or convexity of a function.
The approximate symmetric derivative of f , ASDf(x), is introduced
(the symmetric derivative at x with respect to a set of t with density 1
at 0) and the chapter concludes with an important result of Khinchin:
If f is measurable then f is differentiable at almost every point where
SDf(x)<∞ and, in particular, at almost every point where SDf(x)
exists. Chapter 2 deals with symmetric continuity and symmetry and
begins with results obtained in the first half of the 20th century. It
is centered on a theorem of Charzyński which asserts that if −∞ <
SDf(x) ≤ SDf(x) <∞ at every point of an interval, then the set
of points of discontinuity of f is a scattered set; i.e., each nonempty
subset of the set contains an isolated point (thus, it is also nowhere
dense and at most countable). A variety of related results complete
the chapter. Chapter 3 deals with covering theorems, theorems which
assert that a specific type of cover of a set contains a certain type
of subcover. The author studied these properties extensively in two
earlier survey articles [Real Anal. Exchange 8 (1982/83), no. 1, 67–
207; MR0694507 (84i:26008a); Real Anal. Exchange 8 (1982/83), no.
2, 278–442; MR0700194 (84i:26008b)]. Recent results of Freiling and
Rinne along with those of the author and Preiss and others are
presented. Such theorems are essential to monotonicity theorems,
differentiation and the theory of integration (which is to follow in
Chapter 9). Symmetry here means that a point x is contained in an
interval of the form [x−h, x+h] in a cover. Properties involving the
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numerator of SD2f are called even properties and these are the subject
of Chapter 4. Monotonicity theorems (theorems which assert sufficient
conditions for a function to be monotone nondecreasing and which
are important for integrals) are the subject of Chapter 5. The central
result is the monotonicity theorem for the symmetric approximate
derivative, which was only recently given a correct proof. Properties
involving the numerator of SDf(x) are called odd properties and
form the subject of Chapter 6. Since these properties do not involve
the value of the function f at the point x, they tend to be trickier
and involve functions which are not measurable. Chapter 7 is a
study of the symmetric derivative. While symmetrically differentiable
functions need not be measurable, a surprising result of the author
and Preiss is that the symmetric derivative of a function on an interval
is necessarily measurable. Chapter 8 develops the notion of symmetric
variation, which is used for the integrals developed in Chapter 9. For
example, let Sδ(f,E) =

∑
|f(xi + hi)− f(xi− hi)|, where the sum is

over sequences of nonoverlapping intervals with xi in E; then the
symmetric variation of f on E is V Sf (E) = supSδ(f,E). In Chapter
9, this variation and the monotonicity theorem for the approximate
symmetric derivative are used to produce an integral definable as
a Riemann type integral. An integral based on ASD2, capable of
computing the Fourier coefficients of a function which has an even
convergent Fourier series, is presented. Along with these results of the
author and Preiss, Chapter 9 contains information on other integrals
more general than that of Lebesgue. James Foran (1-MOKC)

MR1228433 (94i:26003) 26A24

Thomson, Brian S. (3-SFR)

The range of a symmetric derivative.
Real Anal. Exchange 18 (1992/93), no. 2, 615–618.
The author gives a simple proof of the result that there is no symmet-
rically differentiable function whose symmetric derivative assumes just
two finite values, obtained by Z. Buczolich and M. Laczkovich [Acta
Math. Hungar. 57 (1991), no. 3-4, 349–362; MR1139329 (92k:28002)].
He also proves that, given three real numbers α, β, γ, with α <
γ < β, γ 6= 1

2 (α+β), there is no symmetrically differentiable function
whose symmetric derivative assumes just the three values α, β and
γ. Tapan Kumar Dutta (Burdwan)
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MR1192420 (94a:28008) 28A12 26A42

Pfeffer, Washek F. (1-CAD) ; Thomson, Brian S. (3-SFR)

Measures defined by gages. (English. English summary)
Canad. J. Math. 44 (1992), no. 6, 1303–1316.
A finitely additive volume ν(A) ≥ 0 is given for each set A in a
family S of subsets of a locally compact Hausdorff space X, A
having closure A− and interior A◦. We are given that if A,B ∈ S
then A− is compact, A∩B ∈ S, there are disjoint sets Cj ∈ S (1 ≤
j ≤ n) with union A−B, and for each x ∈ X, {A ∈ S: x ∈ A◦} is
a neighbourhood base at x. In the language of the reviewer [see,
e.g., The general theory of integration, Oxford Univ. Press, New York,
1991; MR1134656 (92k:26011)], the authors construct a McShane-
type division space and integrals of functions f(x)ν(I), for x ∈ A−,
A ∈ S, I ∈ S, but not necessarily x ∈ I−, using the name “partition”
instead of “division”. The variation ν∗(E) of χ(E;x)ν(I), for χ the
characteristic function of E ⊂X, is shown to be an outer measure of
E with various properties. Gage measurability of certain sets E ⊂X
is defined and proved to be equivalent to the classical definition that,
given ε > 0, there are a closed set F and an open set G with F ⊂ E ⊂
G, ν∗(G−F )< ε. For S∗ the family of such E ⊂X, and M the family
of Carathéodory ν∗-measurable sets of X, then S∗ ⊂M , while if E ∈
M and ν∗(E) <∞ then E ∈ S∗. If the measure from ν∗ is σ-finite
then S∗ =M . If it is not σ-finite and if Σ is the family of all σ-finite
sets in X, Σ⊂ S∗ if X is metacompact (each open cover C∗ of X has
an open refinement C with {E ∈ C: x ∈ E} finite for each x ∈ X).
But if X is only meta-Lindelöf (i.e., {E ∈ C: x ∈ E} countable) the
relation between Σ and S∗ can depend very interestingly on whether
the continuum hypothesis is true, or whether it is false, but with
Martin’s axiom true. Ralph Henstock (Londonderry)

MR1171794 (93g:26012) 26A39 42A16

Cross, George E. (3-WTRL) ; Thomson, Brian S. (3-SFR)

Symmetric integrals and trigonometric series.
Dissertationes Math. (Rozprawy Mat.) 319 (1992), 49 pp.
The paper has a good historical introduction, and incorporates part
of an unpublished manuscript of J. Mař́ık that gives estimates and
properties on the real line of

M2
sF (x, h) =

F (x+h)−F (x−h)
2h

− 1
h2

∫ h

0
{F (x+ t)−F (x− t)} dt

(h > 0) for integrable functions F . The authors use a second symmetric
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variation V 2
s of functions ξ(x, h) of real numbers x and sufficiently

small h > 0 to define a variational integral analogous to the one used in
Denjoy-Perron-gauge theory. V 2

s is proved to be an outer measure, and
many special cases of variational equivalence are given. For example,
if f is Lebesgue or Denjoy-Perron integrable on [a, b] then f is V 2

s -
integrable on [a, b]. The converse holds if f ≥ 0 and is V 2

s -integrable,
and if f and |f | are V 2

s -integrable. If f is V 2
s -integrable on [a, b], there

is a set B of full measure in (a, b) such that f is V 2
s -integrable on

[c, d] for all c < d, c, d ∈ B. Sometimes c cannot be a. The second
derivative of x(1−x2)1/2 is integrable over [−1, 1] but not over [−1, d]
(−1< d < 1). Additivity over abutting intervals sometimes fails. Close
connections with James’ P 2-integral and with J. C. Burkill’s SCP-
integral are given. Mař́ık’s integration by parts formula based on
(GF ′−G′F )′ = GF ′′−G′′F is proved, and then Burkill’s integration
by parts, the usual form, is given following Sklyarenko. Finally, the
results are applied to trigonometric series to give theorems of Mař́ık,
Burkill, W. H. Young, and C. de la Vallée-Poussin. This paper is full
of interesting insights into things old and new.

Ralph Henstock (Londonderry)

MR1147382 (92k:26012) 26A45

Thomson, Brian S. (3-SFR)

Symmetric variation.
Real Anal. Exchange 17 (1991/92), no. 1, 409–415.
The author deals with functions f :R→R. Let E ⊂R and let δ be a
positive function on E. Then

Sδ(f,E) = sup
n∑
i=1

|f(xi +hi)− f(xi−hi)|,

where the supremum is taken with regard to all sequences {[xi −
hi, xi +hi]} of nonoverlapping intervals with centers xi ∈ E and with
hi < δ(xi). The symmetric variation of f on E, VSf (E), is defined by
VSf (E) = inf Sδ(f,E), where the infimum is taken over all positive
functions δ on E. VSf is an outer measure on the real line. The
paper presents properties of functions having zero, finite or σ-finite
symmetric variation on an arbitrary set. It is shown, e.g., that if VSf
is σ-finite on an interval (a, b) then there is a dense set of subintervals
of (a, b) on each of which f has bounded variation.

Pavel Kostyrko (SK-KMSK)
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MR1139321 (92h:35042) 35F20 35B45

Bruckner, A. M. (1-UCSB) ; Petruska, G. (H-EOTVO) ;
Preiss, D. (CS-CHRL) ; Thomson, B. S. (3-SFR)

The equation uxuy = 0 factors.
Acta Math. Hungar. 57 (1991), no. 3-4, 275–278.
The paper deals with the partial differential equation uxuy = 0 on
the plane R2. The question is whether every solution must be a
function of one variable. The authors give an affirmative answer if u
is continuous in each variable separately, and if at each point in R2

at least one of the partial derivatives exists and vanishes.
This extends a result due to W. Jockusch, obtained under the

assumption that the function u belongs to C1(R2).
Paola Loreti (I-ROME-AS)

MR1078198 (92d:26002) 26-02 26A21 26A24

Thomson, Brian S. (3-SFR)

Derivates of interval functions.
Mem. Amer. Math. Soc. 93 (1991), no. 452, vi+96 pp.
This paper is an important treatise on the theory of real functions.
It contains much more than one might guess after just reading the
title. The paper was motivated mainly by some earlier results found
by Rogers and Taylor “to determine the nature of continuous non-
decreasing functions on [0, 1] whose Lebesgue-Stieltjes measures are
absolutely continuous with respect to the s-dimensional Hausdorff
measure on [0, 1]. This problem leads naturally to an investigation of
derivatives of the form

Ds(f, x) = lim sup
y,z→x, y<x<z

(f(z)− f(y))/(z− y)s

which Besicovitch has called Lipschitz numbers.” Generalizing this
problem, the author sets out to study the derivatives of an interval-
point function (i.p.f.) with respect to another i.p.f. The result is a
profound and coherent theory containing most of the classical theo-
rems on real functions, and as an application, also the required results
on s-absolute continuity. With this clear and elegant contribution the
author combines the merits of an excellent survey article and those of
a penetrating research study. It would not be surprising if this mate-
rial soon appeared as a standard and widely appreciated monograph
on the subject. The paper is divided into seven chapters and we re-
view their content in the same order. Section 1 is a very informative
introduction.

Section 2: Covering relations. Studying differential ratios, covering
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relations arise in a natural way: they consist of a bunch of intervals
where the given ratio satisfies some prescribed condition. In general, a
covering relation (c.r.) β is a set of pairs (I, x), where I is an interval
in R and x ∈ I. Two special cases are applied in this work: β is a full
c.r. on a set E ⊂ R if for every x ∈ E there exists δ > 0 such that
x ∈ I◦, |I|< δ implies (I, x) ∈ β; on the other hand, β is fine on E if
for every x ∈ E and δ > 0 there exists I such that x ∈ I◦, |I|< δ and
(I, x) ∈ β hold.

Section 3: The variation. This is the key chapter to the whole essay;
the variations introduced here are the fundamental concepts needed
to develop the theory and they “provide the link between derivation
properties and measure-theoretic properties of functions”.

An interval-point function (i.p.f.) is a real-valued function defined
on some covering relation(s). Let h be an i.p.f. defined on β and
denote

Var(h, β) = sup
{ ∑

(I,x)∈π

|h(I, x)|: π ⊂ β, π a packing
}

(packing means a covering relation such that the intervals in different
elements cannot overlap). Let E be a set of reals, h an i.p.f.; then
the full and fine variational measures are defined and denoted by
h∗(E) = V ∗(h,E) = inf{Var(h, β); β a full covering relation on E}
and h∗(E) = V∗(h,E) = inf{Var(h, β); β a fine covering relation on
E}, respectively. Having the variational measures at hand, integration
is immediate.

Section 4: Derivates. Let h and k be i.p.f. The derivates of h
relative to k are D(h, k, x) = lim supδ→0+{|h(I, x)/k(I, x)|: |I| < δ,
x ∈ I◦} and D(h, k, x) = lim infδ→0+{|h(I, x)/k(I, x)|: |I|< δ, x ∈ I◦}.
As expected, these derivates are closely related to the variational
measures of h and k. In the case of interval functions the derivates
belong to the second Baire class (which ensures measurability).

Section 5: Absolute continuity and singularity. Let h and k be i.p.f.
and let E ∈R. h is absolutely continuous with respect to k, in symbols
h� k, on E if for every ε > 0 there exists a δ and a full c.r. β on
E such that, whenever π ⊂ β is a packing with

∑
(I,x)∈π |k(I, x)| < δ,

then
∑

(I,x)∈π |h(I, x)|< ε. On the other hand h and k are said to be
mutually singular on E (h ⊥ k) if for every ε > 0 there exists a full
c.r. on E such that every packing π ∈ β has a disjoint decomposition
π = π1 ∪π2 for which

∑
(I,x)∈π1

|h(I, x)|< ε and
∑

(I,x)∈π2
|k(I, x)|< ε.

Weak absolute continuity and weak singularity are defined analo-
gously by substituting “fine” in place of “full”. The relations �, ⊥ are
preserved by the variational equivalence ≡ and, as one may expect,
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the variational measures behave similarly to the Lebesgue-Stieltjes
measures.

Section 6: Measures. This chapter shows how the theory applies
for classical measures (Lebesgue, Lebesgue-Stieltjes, Hausdorff) and
we can reasonably well summarize the content by saying that all the
classical theorems are readily available if the underlying function (or
interval function), which generates the measure, is continuous.

Section 7: Real functions. This chapter is undoubtedly the culmi-
nation of the work. It will convince any reader that his efforts to
accept another way (actually two more ways) of developing the the-
ory of integration and differentiation are highly rewarded. The main
applications are the characterizations of the Hausdorff absolutely con-
tinuous and singular functions, but as was the case with the measures,
the “standard” real function theory (for continuous functions) quickly
follows: Lebesgue’s theorem on monotone functions, Lebesgue de-
composition, Jordan decomposition, de la Vallée Poussin’s theorem,
description of singular functions appear (are proved) here with ease
and in a wider setting. G. Petruska (H-EOTVO-1)

MR1059435 (91e:26008) 26A24 26A15

Thomson, Brian S. (3-SFR)

An analogue of Charzyński’s theorem.
Real Anal. Exchange 15 (1989/90), no. 2, 743–753.
A result of Z. Charzyński [Fund. Math. 21 (1933), 214–225; Zbl 8,
344] states that if a function f :R → R satisfies the condition that
lim suph→0 |[f(x+ h)− f(x− h)]/2h| < +∞ at every point x, then
f is continuous everywhere excepting only at the points of some
scattered set. Here, the author establishes what can be viewed as
the “even” analogue of this result by showing that if a measurable
function f :R→R satisfies the condition that lim suph→0 |[f(x+h)+
f(x− h)− 2f(x)]/2h| < +∞ at every point x, then f is continuous
everywhere excepting only at the points of some scattered set. (The
necessity of the measurability condition is well known.) Actually, the
author provides two interesting proofs for this result, one utilizing the
Charzyński result, and the other independent of it.

Michael Evans (1-WLEE)



Results from MathSciNet: Mathematical Reviews on the Web
c© Copyright American Mathematical Society 2006

MR1042553 (91b:26010) 26A24

Thomson, Brian S. (3-SFR)

Some symmetric covering lemmas.
Real Anal. Exchange 15 (1989/90), no. 1, 346–383.
The purpose of this paper is first to present many of the constructions
fundamental to the study of symmetric behavior of functions in the
context of covering theorems (or lemmas), and second to apply these
covering lemmas. In so doing, the author lays out a convincing case
for the simplicity of this covering theory perspective. Many classical
theorems are re-proved and several new theorems are presented. The
paper begins with an historical view of the study. This is followed by
a listing of the covering lemmas. Complete proofs are given but in
separate sections later in the article. Paul D. Humke (1-OLAF)

MR1013466 (90m:26018) 26A39 42A20

Preiss, D. (CS-CHRL) ; Thomson, B. S. (3-SFR)

The approximate symmetric integral.
Canad. J. Math. 41 (1989), no. 3, 508–555.
The object of this paper is the definition of an integral of the Henstock-
Kurzweil type which solves the coefficient problem, i.e. which inte-
grates the sum function f(x) of an everywhere convergent trigono-
metric series (∗) 1

2a0 +
∑∞

1 (an cosnx+ bn sinnx) and then yields (∗)
as the Fourier series of f . The various existing integrals with the same
capacity are inspired by the fact that, if G(x) is the sum of the twice
formally integrated series (∗), then f(x) = limh↘0{G(x+h)−2G(x)+
G(x− h)}/h2. The present approach derives from Zygmund’s theo-
rem to the effect that the function F (x) defined a.e. as the sum of
the once formally integrated series (∗) has f(x) as its approximate
symmetric derivative.

An interval-point relation β is defined as a collection of pairs (I, x),
where I is a nondegenerate closed interval and x ∈ I; and β is called
measurable approximate symmetric if there is a measurable set T ⊂
R× (0,∞) such that ([x− t, x+ t], x) ∈ β whenever (x, t) ∈ T , and
lim suph↘0 |{t ∈ (0, h); (x, t) /∈ T}|/h= 0 (where | · | denotes Lebesgue
outer measure). The family of these β is denoted by A. Also a finite
β is called a packing of [a, b] if I1, I2 do not overlap when (I1, x1),
(I2, x2) ∈ β are distinct, and the packing is a partition if, additionally,
[a, b] =

⋃
(I,x)∈β I. The key result is that, if {βn} ⊂A, there is a set B

of full measure such that each βn contains a partition of every interval
[a, b] with endpoints in B.

Given a real-valued function f on R, suppose that there exists an
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additive interval function F defined for all intervals with endpoints
in a set B of full measure so that, for every ε > 0, there exists β ∈A

which contains a partition of every interval with endpoints in B and
is such that, for every packing π in β,∑

([y,z],x)∈π

|F (y, z)− f((y+ z)/2)(y− z)|< ε.

Then f is said to be A-integrable and F is called an indefinite
A-integral of f . Under these circumstances, f and F are both mea-
surable, F is everywhere A-continuous, i.e. ap-limh↘0 F (x−h, x+h)
= 0, and f is a.e. the A-derivative of F , i.e. ap-limh↘0 F (x− h,
x+ h)/h = f(x). The A-integral includes the Denjoy-Perron and so
the Lebesgue integral, but a nonnegative A-integrable function is also
Lebesgue integrable.

There is a sketch of an A-Perron integral (weaker than the A-
integral) defined by use of lower and upper approximate symmetric
derivatives. The definition depends on the so far unpublished theorem
of C. Freiling and D. Rinne asserting that an additive measurable
interval function with an everywhere nonnegative lower approximate
symmetric derivative is nonnegative. The detailed construction is
carried out in a rather more general setting.

Now let the function f have period 2π, say. If there exists a number
c such that, for every ε > 0, there exists β ∈ A, such that, for any
partition x0 < x1 < · · · < xn−1 < xn = x0 + 2π with ([xi−1, xi], (xi−1 +
xi)/2) ∈ β (i= 1, · · · , n), |

∑n
1 f((xi−1 +xi)/2)(xi−xi−1)− c|< ε, then

f is said to have the periodic integral c. The A-integral is shown to
include the periodic integral.

The proof that the A-integral solves the coefficient problem relies on
the integral’s ability to integrate approximate symmetric derivatives
of measurable functions. Since the periodic integral also has this
ability, it provides a particularly simple route to a solution of the
coefficient problem.

The last part of this paper is devoted to the relationships between
the A-integral and other integrals that solve the coefficient problem,
such as the SCP-integral. Simple examples show that neither integral
contains the other. Moreover, when a function is integrable in both
senses, the corresponding integrals may differ. H. Burkill (Sheffield)
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MR0988374 (90a:26001) 26A03

Preiss, David (CS-CHRL-MA) ; Thomson, Brian S. (3-SFR)

A symmetric covering theorem.
Real Anal. Exchange 14 (1988/89), no. 1, 253–254.
From the text: “By a symmetric full cover of the real line is meant a
collection S of closed intervals with the property that for every real x
there is a δ(x)> 0 such that [x−h, x+h] ∈ S for every 0< h < δ(x).
It has been shown [Thomson, same journal 6 (1980/81), no. 1, 77–93;
MR0606543 (82c:26008)] that for such a collection S there is a closed
denumerable set C ⊂ (0,∞) such that S contains a partition of every
interval [−x, x] with x /∈ C. The simplicity and utility of this result
may have led some to overlook an extension that is on occasion more
useful.

“Theorem: Let S be a symmetric full cover on the real line. Then
there is a denumerable set N such that S contains a partition of every
interval neither of whose endpoints belongs to N .”

MR0873899 (88c:26007) 26A24 26A45

Thomson, Brian S. (3-SFR)

Some remarks on differential equivalence.
Real Anal. Exchange 12 (1986/87), no. 1, 294–312.
This interesting paper places some differential concepts of
S. Leader [Amer. Math. Monthly 93 (1986), no. 5, 348–356;
MR0841112 (87e:26002); Real. Anal. Exchange 12 (1986/87),
no. 1, 144–175; MR0873890 (88a:26007)] in the setting of
the present author’s general differentiation theory [ibid. 8
(1982/83), no. 1, 67–207; ibid. 8 (1982/83), no. 2, 278–442;
MR 84i:26008ab; Real functions, Lecture Notes in Math., 1170,
Springer, Berlin, 1985; MR0818744 (87f:26001)]. Let h(I, x) be
an interval point function. It then is said to be (V B)-dampable,
according to Leader, if there is a k(x) > 0 and a g of bounded vari-
ation such that k(x)h(x, I) and g(I) (= g(β)− g(α) if I = [α, β])
are differentially equivalent (roughly speaking, k is the deriva-
tive of g with respect to h). One of the main results is: if f(x)
is continuous then f(I) is (V B)-dampable if and only if f is
V BG∗. P. S. Bullen (3-BC)



Results from MathSciNet: Mathematical Reviews on the Web
c© Copyright American Mathematical Society 2006

MR0869719 (88f:26005) 26A24

Bruckner, A. M. (1-UCSB) ; Laczkovich, M. (H-EOTVO) ;
Petruska, G. (H-EOTVO) ; Thomson, B. S. (3-SFR)

Porosity and approximate derivatives.
Canad. J. Math. 38 (1986), no. 5, 1149–1180.
This is an important and highly technical paper concerned with
the relationships between ordinary, approximate, path and sequential
derivatives with various porosity conditions. One reason for its im-
portance deals with an early result of A. Ya. Khinchin [Mat. Sb. 31
(1924), 265–285]. This result, by counterexample, is shown to be false
(a fact, pointed out by the authors, that may have been known to
Khinchin). Since G. H. Sindalovskĭı has used this result and some of
the faulty techniques in one of his papers [Math. USSR-Izv. 2 (1968),
no. 5, 943–978; MR0239016 (39 #375)], it appears that some of his
results may not be correct.

The authors provide also a correct version of Khinchin’s theorem
and a necessary and sufficient condition for Sindalovskĭı’s result to
hold. The results are rather too technical to restate in this short
format, but we include the following from the author’s introduction:
“A path derivative of a function f is f ′E(x) = limy→x, y∈Ex(f(y)−
f(x))/(y−x), where at each point x a set Ex is given. A special case of
the path derivative is the sequential derivative, f ′h(x) = limn→∞(f(x+
hn)− f(x))/hn, where {hn} is a fixed sequence of nonzero numbers
converging to zero. Two natural questions arise in this setting: (a)
what information about f ′E or f ′h on a set A implies that f is
differentiable or approximately differentiable a.e. in A and (b) when
such derivatives exist on a set A, on which the approximate derivative
f ′ap also exists, what conditions ensure that f ′ap(x) = f ′E(x) or f ′ap(x) =
f ′h(x) a.e. in A?” Richard J. O’Malley (1-WIM)

MR0825474 (87g:26007) 26A30 26A24

Thomson, B. S. (3-SFR)

Singular functions.
Rev. Roumaine Math. Pures Appl. 30 (1985), no. 9, 793–800.
In this review all functions are real functions defined on a fixed
interval [a, b], all sets are subsets of [a, b], and all intervals are closed
subintervals of [a, b]. A collection C of intervals is called a full cover
of a set E if for each x ∈ E there is a δ(x)> 0 such that the intervals
[x, x+ t] and [x− t, x] for which 0< t < δ(x) belong to C; C is called a
fine cover of E if for every x ∈ E and every ε > 0 there is a number t
for which 0< t < ε so that one of the intervals [x, x+ t] and [x− t, x]
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belongs to C. If h is a real-valued interval function defined at least on
C then we write Var(h,C) = sup[Σ|h(I)|; I ∈ π], where the supremum
is taken over all finite subsets π ⊂ C such that I and J do not overlap
for distinct I, J in π. We write V (h,E) = inf[Var(h,C): C is a full
cover of E] and V (h,E) = inf[Var(h,C): C is a fine cover of E].

Let µf (E) = V (f,E), where f denotes both the function x 7→
f(x) and its associated interval function f : [c, d] → [f(d)− f(c)]. If
V (f,E) = V (f,E), µf (E) is the variation V (f,E). The functions f
and g are mutually singular on E if V (

√
|f, g|, E) = 0. Necessary

and sufficient conditions are given for two functions f and g of finite
variation to be mutually singular on E.

Solomon Marcus (Bucharest)

MR0818744 (87f:26001) 26-02

Thomson, Brian S. (3-SFR)

FReal functions.
Lecture Notes in Mathematics, 1170.
Springer-Verlag, Berlin, 1985. vii+229 pp. $14.40.
ISBN 3-540-16058-2
The title of the book is somewhat misleading. This is not a course
on real functions but a survey of up-to-date research in this field. It
contains a number of topics related to the study of the continuity
and differentiation properties of functions of one variable. These are
connected with the notions of cluster sets, variation of a function and
monotonicity. There are now a large number of papers concerning
this subject available in a variety of journals. The author collects and
continues certain ideas that arise in those articles. The framework
that he uses to formulate new and reformulate old notions of limit,
continuity, derivation, etc., is the local system of sets. This is a
modification of the concept of filter that is used in topology. By a
local system on a set X ⊂R we mean a family S of sets S ⊂R such
that at each point x ∈ X there is given a nonempty collection S(x)
of sets S ∈ S with the following properties: (i) {x} /∈ S(x), (ii) if S ∈
S(x) then x ∈ S, (iii) if S1 ∈ S(x) and S2 ⊃ S1 then S2 ∈ S(x), (iv)
if S ∈ S(x) and δ > 0 then S ∩ (x− δ, x+ δ) ∈ S(x). Let f :R → R.
An extended real number c is called an S-limit of f at x if f−1(U) r
{x} ∈ S(x) for every open set U containing c. In a similar manner we
define S-derivates and then the S-cluster sets at x as the collection of
all S-limits at x. Many examples of local systems are given in the first
chapter, among them those connected with approximate continuity,
essential continuity, quasicontinuity, negligent limits, etc. From the
general definition of the local system there arise the notions of S-



Results from MathSciNet: Mathematical Reviews on the Web
c© Copyright American Mathematical Society 2006

cover of a set, e.g. the S-Vitali cover, the S-variation of a function
and the variation measure.

Chapter two, “Cluster sets”, gives the classical material on real
cluster sets and develops some abstract presentation of this material.
There are three basic types of theorems in this study; these concern
a weak form of continuity, asymmetry theorems like Young’s Rome
theorem, and ambiguity theorems on the set of points at which S1-
and S2-cluster sets do not have even a single value in common.

A function f is said to be S-continuous at x if f(x) belongs
to the S-cluster set of f at x. This concept permits much more
delicate variants of continuity than one-sided continuity, approximate
continuity, etc. The properties of the sets of S-continuity and S-
discontinuity points are studied, especially for Baire 1 functions and
functions with the Darboux property. The conditions under which S-
continuity requires continuity in the ordinary sense end Chapter three
(entitled “Continuity”).

In Chapter four, “Variation of a function”, the author explores
the notion of bounded S-variation. For each function f and each
local system S there is an outer measure defined which is used to
describe various differentiation properties of f . The Denjoy-Luzin
theorems on differentiability of a VBG∗ function, the de la Vallée-
Poussin decomposition theorem, properties of absolutely continuous
and of singular functions are generalized and proven.

Chapter five, “Monotonicity”, is devoted to conditions under which
a function is monotone, first of all to those concerned with the S-
derivates.

In Chapter six, “Relations among derivatives”, the author is con-
cerned with an abstract investigation of classical results of W. H.
Young, Denjoy and others. The section contains a variety of related
theorems; all of them have as their focus the assertion of connections
between two different processes of derivation. These concerns are con-
tinued in Chapter seven, “The Denjoy-Young relations”. It contains a
proof of the Denjoy-Young-Saks theorem and discusses several vari-
ants of this theorem obtained by a number of investigators, among
them the approximate version of the theorem. Some results are ex-
pressed in terms of “porosity limits”. The exceptional sets recognized
in classical theorems as zero sets or sets of the first category appear
as σ-porous sets.

The book concludes with a useful appendix on porous sets. It may
be used as an introduction to the concept and as a point of reference.
Connections between the thinness of a set and its thinness given in
the sense of category, measure and Hausdorff measure are studied.
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Many nontrivial examples of porous, nonporous and σ-porous sets are
given.

The book gives a fairly complete account of results obtained up to
very recently. This includes works by A. M. Bruckner, K. M. Garg,
P. D. Humke, J. M. J

‘
edrzejewski, M. Laczkovich, R. J. O’Malley, T.

Świ
‘
atkowski, W. Wilczyński, L. Zajiček and others. A part of the

material is taken from the research of the author. This is a treatise
gathering new results and setting them into the context of the current
state of the theory of real functions. It is a thoroughly professional
contribution to the literature and the author is to be commended for
producing it. J. S. Lipiński (PL-GDAN)

MR0807990 (87h:26002) 26A15

Thomson, B. S. (3-SFR)

On the level set structure of a continuous function.
Classical real analysis (Madison, Wis., 1982), 187–190, Contemp.
Math., 42, Amer. Math. Soc., Providence, RI, 1985.
Given A ⊂ R, x ∈ A and h > 0, let λ(A, x, h) denote the length of
the largest open interval in (x, x+ h) that lies in the complement
of A. The set A is said to be strongly porous on the right at x if
lim suph→0+ λ(A, x, h)/h = 1. Strong porosity on the left is defined
similarly.

The author obtains two theorems dealing with the thinness of level
sets of continuous functions. (1) If a continuous function f :R→ R
is nowhere constant, then there is a residual set E in R such that
for each x ∈ E the level set f−1(f(x)) is strongly porous on both
sides at x. In the case when f is nowhere monotone, it was proved
earlier by the reviewer [Fund. Math. 52 (1963), 59–68; MR0143855 (26
#1405)] that each x ∈ E is a bilateral limit point of f−1(f(x)). Now
let Φ denote the Banach space of all continuous 2π-periodic functions
f :R→R furnished with the sup norm. (2) There is a residual set C in
Φ such that, for each f ∈ C, every level set of f is strongly porous on
both sides at each of its points. Further properties of level sets of f ∈
C were obtained earlier by A. M. Bruckner and the reviewer [Trans.
Amer. Math. Soc. 232 (1977), 307–321; MR0476939 (57 #16487)].
{For the entire collection see MR0807970 (86f:00013)}

K. M. Garg (3-AB)



Results from MathSciNet: Mathematical Reviews on the Web
c© Copyright American Mathematical Society 2006

MR0807980 (86m:26004) 26A21 54H05

Humke, P. D. (1-OLAF) ; Thomson, B. S. (3-SFR)

A porosity characterization of symmetric perfect sets.
Classical real analysis (Madison, Wis., 1982), 81–85, Contemp.
Math., 42, Amer. Math. Soc., Providence, RI, 1985.
Starting with a sequence of numbers en between 0 and 1

2 and an = 1−
2en, an open interval of length (b− a) · a1 is removed from the center
of the interval [a, b]. Open intervals of length L1a2 are removed from
the center of the remaining intervals whose length is L1. Repeating
this process for each natural number n leaves behind what the authors
refer to as a symmetric perfect set. They show that this set is non-
σ-porous if and only if en approaches 1

2 and note that the set has
positive measure if and only if 2n

∏
en 6= 0. Alternatively, they note

that the set is non-σ-porous if and only if an approaches 0 and has
positive measure if and only if

∑
an <∞. Every σ-porous set is of first

category and of measure 0. This paper provides a plethora of examples
of sets of measure 0 and first category which are not σ-porous.
{For the entire collection see MR0807970 (86f:00013)}

James Foran (1-MOKC)

MR0807973 (87b:26008) 26A24

Bruckner, A. M. (1-UCSB) ; O’Malley, R. J. (1-WIM) ;
Thomson, B. S. (3-SFR)

Path derivatives: a unified view of certain generalized
derivatives.
Classical real analysis (Madison, Wis., 1982), 23–27, Contemp.
Math., 42, Amer. Math. Soc., Providence, RI, 1985.
This article is a summary of the excellent paper of the same title
which appeared earlier [Trans. Amer. Math. Soc. 283 (1984), no. 1,
97–125; MR0735410 (86d:26007)].
{For the entire collection see MR0807970 (86f:00013)}

Michael Evans (1-WLEE)



Results from MathSciNet: Mathematical Reviews on the Web
c© Copyright American Mathematical Society 2006

MR0735410 (86d:26007) 26A24

Bruckner, A. M. (1-UCSB) ; O’Malley, R. J. (1-WIM) ;
Thomson, B. S. (3-SFR)

Path derivatives: a unified view of certain generalized
derivatives.
Trans. Amer. Math. Soc. 283 (1984), no. 1, 97–125.
In this paper the authors introduce the concept of the path derivative
and present the fundamental properties of this important new tool in
differentiation theory. The first three sections provide introduction,
preliminaries and some basic facts.

A subset Ex ⊂R of the real line R is called a path leading to x if
x ∈ Ex and x is an accumulation point of Ex. Given a system of paths
E = {Ex: x ∈R} we can define the path derivative of a real function F
with respect to the system E by F ′

E = limy→x,y∈Ex(f(y)− f(x))/(y−
x). The notions “E-differentiable”, “E-primitive”, “E-derivative”,
“extreme E-derivates” are now obvious. Many of the well-known
generalized derivatives can be expressed as a path derivative with
respect to a suitably chosen system of paths. The authors recall
Jarnik’s theorem (Theorem 3.1): There exists a universal continuous
function F such that for any given function f on R a system of paths
E can be found with F ′

E = f .
This clearly indicates that being the E-derivative of F implies

nothing more on f than the trivial fact that f(x) is a derived
number of F at every x. This motivates one to introduce more
restrictive conditions on E. E is said to satisfy the intersection
condition (I.C.) if a function δ(x) > 0 exists such that whenever
0 < y − x < min(δ(x), δ(y)) then Ex ∩Ey ∩ [x, y] 6= ∅. The internal
intersection condition (I.I.C.) means Ex ∩Ey ∩ (x, y) 6= ∅ and the
external intersection condition with parameter m (E.I.C.[m]) means
Ex ∩Ey ∩ (y, y+m(y−x)) 6= ∅, Ex ∩Ey ∩ (x−m(y−x), x) 6= ∅. The
case m= 1 is simply labelled as E.I.C.

Also, bilateral paths and nonporous paths are often assumed. For
example, an approximately differentiable function F admits a choice
of E such that each path in E has density 1 at x and F ′

app = F ′
E . In this

case Ex is bilateral, nonporous at x and satisfies any of the intersection
conditions defined above. Moreover, the majority of the properties of
the approximate derivative depend upon these conditions on E and
hence they are immediate for generalization. As for the selective
derivative (introduced by O’Malley [Acta Math. Acad. Sci. Hungar.
29 (1977), no. 1-2, 77–97; MR0437690 (55 #10614)]), it is shown that
the E-derivative with respect to a bilateral I.I.C. system is also a
selective derivative relative to a suitable selection. However, it is an
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open problem whether every selective derivative can be represented
as a path derivative relative to such a system.

In Section 4 the results are formulated in terms of the extreme
E-derivates. As generalizations of the results of G. C. Young and
W. H. Young, it is shown that F̄ ′

E(x) < F ′
E∗(x) can only hold on a

countable set if the systems E and E∗ satisfy I.C.; and also, if E
satisfies I.C., then the extreme E-derived numbers agree with the
corresponding ordinary extreme Dini derivates everywhere off a set
of first category. Denjoy’s classical theorem directly generalizes as
follows: If E satisfies I.C. and everywhere on a set X one of the
extreme derivates F ′

E or F̄ ′
E is finite, then F is of generalized bounded

variation (VBG) on X; if both of these are finite, then F is generalized
absolutely continuous (ACG) on X. Next, monotonicity theorems are
obtained; for instance, F ′

E ≥ 0 a.e. and F ′
E > −∞ (x ∈ [a, b]) imply

that F is increasing (again, I.C. and bilateral paths are assumed).
Properties of E-primitives are discussed in Section 5. The next

result has been obtained earlier for several generalized derivatives and
it clearly shows the unifying strength of the E-derivative. Let F be E-
differentiable relative to a system E satisfying any of the intersection
conditions. Then, F is absolutely continuous on the components of
an everywhere dense open set. In particular, F is differentiable a.e.
on this set and approximately differentiable a.e. on R. This result is
sharpened in a later section under more restrictive conditions: If E
has nonporous paths and satisfies both I.C. and E.I.C., then an E-
differentiable function is differentiable on an everywhere dense open
set. Section 6 deals with the path derivatives. F ′

E belongs to the first
class of Baire, if E has E.I.C.[m]. The Darboux property holds for F ′

E

if it is Baire 1 and E is bilateral with I.C. An E-derivative has the
Denjoy property, if the paths of E are bilateral and E satisfies both
I.C. and E.I.C.[m].

It is also shown that the porosity of the associated sets of F ′
E is

directly connected to that of the paths in E. As regards Zahorski’s
M3 property, the following result is obtained: Let E be a system of
nonporous paths satisfying I.C. and E.I.C. Then every E-derivative
has the M3 property.

Section 7 gives criteria for the differentiability of E-primitives
and miscellaneous results are collected in Section 8. The important
O’Malley-Weil “−M,M” theorem on the approximate derivative is
generalized as follows. Let E be a nonporous system of paths satisfying
I.C. If F is E-differentiable and F ′

E is Baire 1, then whenever F ′
E

attains the values M and −M on an interval I0, there is a subinterval
I ⊂ I0 on which F is differentiable and F ′ attains both values M and
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−M .
Many interesting applications are mentioned. This well-written pa-

per is an extremely useful contribution to differentiation theory. It
clarifies the essential conditions on which the much-investigated prop-
erties of generalized derivatives really depend. It will serve researchers
in this area as a map serves explorers of the jungle.
{See also the following review.} G. Petruska (H-EOTVO-1)

MR0766077 (86b:26006) 26A24 26A27

Bruckner, A. M. (1-UCSB) ; Thomson, B. S. (3-SFR)

Porosity estimates for the Dini derivatives.
Real Anal. Exchange 9 (1983/84), no. 2, 508–538.
For any function f :R→R, let A(f) denote the set of points at which
the upper right Dini derivate differs from the upper left Dini derivate.
The classical paper of W. H. Young [Proc. London Math. Soc. (2) 6
(1908), 298–320; Jbuch 39, 467] states that if f is continuous, then
A(f) is a first category set. P. D. Humke and the reviewer [Proc.
Amer. Math. Soc. 79 (1980), no. 4, 609–613; MR0572313 (81h:26002)]
have shown that if f satisfies a Lipschitz condition, then A(f) is
a σ-porous set. The present paper uses the notions of porosity and
(Ψ)-porosity to form a framework to unify and extend these and
related theorems. One of the main results is the following. Let Ψ be
a continuous increasing function on [0,+∞) for which Ψ(0) = 0 and
Ψ′

+(0) = +∞, and let f be a continuous function satisfying |f(x)−
f(y)| ≤ Ψ(|x− y|) for |x− y| ≤ 1. Then at every point x with the
exception of a set that is σ-(Ψ)-porous, and for every 0 ≤ p < 1, the
left and right upper porosity Dini derivates of index p of f at x
agree with the ordinary upper Dini derivate of f at x. (The various
definitions are too technical to include here, but to anyone familiar
with porosity, they are the natural ones.) Several other interesting
theorems and examples are presented. Michael Evans (1-WLEE)
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MR0686501 (84c:26012) 26A24

Thomson, B. S.
Some theorems for extreme derivates.
J. London Math. Soc. (2) 27 (1983), no. 1, 43–50.
In recent years, two classical theorems the Dini derivates of functions
have been extended to certain generalized derivatives. One of these
theorems asserts that for a continuous function, the two unilateral up-
per derivates agree except on a first category set. The other theorem
asserts that for arbitrary functions, a lower derivate can exceed the
opposed upper derivate on at most a denumerable set. The present
author obtains versions of these theorems in the setting of path deriv-
atives, a rather general setting which embraces many of the known
notions of generalized differentiation. He shows that an analogue of
the first theorem is valid whenever the system of paths satisfies a
rather weak porosity condition. An analogue of the second theorem is
available whenever the system of paths satisfies a certain intersection
condition. In particular, the theorem holds in the setting of approx-
imate differentiation. The article contains all the necessary technical
language, as well as some historical discussion of settings in which the
results are known to be valid or invalid.

A. M. Bruckner (Santa Barbara, Calif.)

MR694 507 (84i:26008a) 26A24 26A39 28A15

Thomson, B. S.
Derivation bases on the real line. I.
Real Anal. Exchange 8 (1982/83), no. 1, 67–207.

MR0700194 (84i:26008b) 26A24 26A39 28A15

Thomson, B. S. (3-SFR)

Derivation bases on the real line. II.
Real Anal. Exchange 8 (1982/83), no. 2, 278–442.
Differentiation is a local process, but the study of its properties needs
global constructions such as divisions or partitions of sets. The author
uses derivation bases, i.e. nonempty collections of families of interval-
point pairs, instead of the reviewer’s division space ideas, to unify the
treatment of derivatives, Kurzweil’s special and the reviewer’s more
general types of generalized Riemann integration, and the reviewer’s
variation. de Guzmán has studied the differentiation of absolute inte-
grals while the present author studies differentiation and absolute and
nonabsolute integration, but only on the real line, ignoring derivatives
and integrals defined by convergence-factors, higher order derivatives,
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and vector-valued functions. Even with these limitations a large num-
ber of derivation processes are considered of the form GD hg(x) =
lim inf h(I)/g(I), GDhg(x) = lim sup h(I)/g(I), where the interval I
tends to the point x in a sense involving derivation bases. Usually
g(I) = |I|, the length of I. Chapter 1, p. 70, introduces the theory
with a wealth of special examples, Chapter 2, p. 91, deals with deriva-
tion bases, and Chapter 3, p. 137, discusses the variation. This is an
outer measure when the derivation base has σ-local character (or is
decomposable). Further, Baire 1 properties and various decomposi-
tions are given. The whole theory prepares the way for the second
paper and 118 references are given.
{Reviewer’s remarks: In two places, p. 88 line 4 and p. 118 line 2,

the square brackets need to contain the respective numbers 110 and
58. Other trivial typing errors can easily be corrected.}

Part II has Chapter 4, p. 280, on the derivation theory and Chapter
5, p. 362, on the integration theory. The paper has a slight refinement
using simple systems of sets and constructing derivation bases from
them (pp. 280–283) and proceeds to connections between the two. It
is shown that in various generalized senses, a zero derivative implies a
constant primitive, a bounded derivative implies bounded variation,
and an exact finite derivative implies an ACG primitive, and the
fundamental theorem of calculus holds in both directions in that the
derivative of the integral is the integrand, while the integral of the
derivative recovers the original function to within a constant, even in
the general senses. Monotonicity follows from the nonnegativeness of
the lower derivate in a variety of senses given in Section 6, Chapter
4, while relations between derivates using various bases are discussed
in Section 7, including Denjoy, Beppo Levi, Young, and Khinchin
relations. Sections 8, 9 discuss properties of exact derivatives. Chapter
5 gives a discussion of the many varieties of generalized Riemann
integral, with Cauchy-type existence of limits of sums, and proceeds to
the variational, Ward, and Perron integrals, with properties including
limits under the integral sign (except dominated convergence), the
Cauchy and Harnack extensions, and integration by parts. In an
appendix the author explains the notion of set porosity that has
connections with differentiation and that began with Denjoy. There
are 338 references.
{Reviewer’s remark: Concerning p. 279 lines 18, 19, the reviewer

cannot claim H. W. Pu as his student, nor P. McGill, except as a
valued colleague for some years and a student of J. J. McGrotty who
was the reviewer’s first research student. On p. 261 lines 10, 15, for
Ds read Ds, and for F ′ read F

′
. Any further corrections are easy to
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make. The author has given a magnificent theory in the two papers,
and the reviewer looks forward to reading the proposed book.}

Ralph Henstock (Coleraine)

MR0627688 (83b:26014) 26A48 28A15

Thomson, B. S.
Monotonicity theorems.
Proc. Amer. Math. Soc. 83 (1981), no. 3, 547–552.
The author introduces the notion of an abstract derivation basis and
interprets several monotonicity theorems in terms of the “geometry” of
the derivation basis. This work can be considered a part of an extensive
plan of the author to unify a number of concepts in real analysis
through the use of differentiation bases. The details of the approach
are too technical to be reproduced here but the interested reader is
referred to the expository article [MR0623052 (83b:26015)below].

The reviewer echoes the comments of A. M. Bruckner in his review
of another article by the author [J. London Math. Soc. (2) 22 (1980),
no. 3, 473–485; MR0596326 (81m:26004)] in connection with this
paper. Richard J. O’Malley (Milwaukee, Wis.)

MR0632744 (83a:26017) 26A45 28A12

Thomson, B. S.
Outer measures and total variation.
Canad. Math. Bull. 24 (1981), no. 3, 341–345.
The author gives some theorems on the outer measures ψf and ψf that
have been introduced in a companion paper [83a:26016 above] and are
connected with the Henstock total variation measures. For instance,
if f :R → R is continuous and has locally bounded variation then
the measures ψf and ψf are identical. For every function f ∈ C[a, b]
excepting a subset of the first category in that space, the measure ψf
vanishes and the measure ψf is non-σ-finite on each subinterval of
[a, b]. J. S. Lipiński (Gdańsk)
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MR0632743 (83a:26016) 26A45 26A24 28A12

Thomson, B. S.
On the total variation of a function.
Canad. Math. Bull. 24 (1981), no. 3, 331–340.
The problem in general is to provide a construction of a measure from
a completely arbitrary function in such a way that the values of this
measure provide information about the total variation of the func-
tion over sets of real numbers and from which useful inferences can be
drawn. In the study of the derivation properties of the function there
is a natural method of constructing some useful variation measures.
The author uses such ideas to give general variation measures that an-
swer some problems in derivation theory. Let R be the set of all real
numbers and J the collection of all closed intervals. If S ⊂ J ×R and
h: J ×R→R then put V (h, S) = sup

∑
|h(Ii, xi)|, where {(Ii, xi)} is

a sequence of interval-point pairs from S with pairwise nonoverlap-
ping elements Ii. Put V (h,∅) = 0 and V (h,A) = inf{V (h, S):S ∈ A},
where A is any nonempty family of subsets of J ×R. Let S[X] =
{(I, x) ∈ S:x ∈ X} and A[X] = {S(X):S ∈ A}. Then the author de-
fines the outer measures ψf (X) and ψf (X) as V (h,A[X]), where h is
the function h([a, b], x) = f(b)− f(a) and A can be chosen separately
to yield either measure.

The classical Peano-Jordan measures, the Lebesgue-Stieltjes mea-
sures, and the Henstock variation and inner variation appear to be
particular cases of this general notion. J. S. Lipiński (Gdańsk)

MR0623052 (83b:26015) 26A48 28A15

Thomson, B. S.
Monotonicity theorems.
Real Anal. Exchange 6 (1980/81), no. 2, 209–234.
This is a well-written readable exposition of the author’s plan to apply
abstract differentiation theory to monotonicity theorems. (Actually
the concepts developed here have a broader application but only the
monotonicity aspects are discussed here.) A superficial sketch of the
contents follows: (1) The concepts of an abstract derivation basis B
and the extreme derivates of a function f relative to B are defined.
(2) As illustration and motivation, examples of various bases which
yield traditional ideas of derivative or derivate are given. (3) Five
properties are described: filtering down, pointwise character, finer
than the topology, partitioning and Young decomposition. In each
instance, it is clearly explained what bearing each property has to the
general problem. (4) For a derivation basis B having these properties,
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illustrations are given of monotonicity theorems which follow from the
behavior of the extreme B derivatives. (5) Total variation measures
are described and their properties enumerated. It is shown that in
this study of monotonicity their use leads to the concept of H-
completeness. (6) Finally H-completeness, in conjunction with the
other properties, is shown to yield several monotonicity results.

Richard J. O’Malley (Milwaukee, Wis.)

MR0606543 (82c:26008) 26A24

Thomson, B. S.
On full covering properties.
Real Anal. Exchange 6 (1980/81), no. 1, 77–93.
The purpose of this paper is to promote the notion of full covers and
their associated full covering lemmas in contrast to Vitali covers and
their associated covering lemmas. A collection of closed subintervals
of [a, b] is called an ordinary full cover of [a, b] if to each x in [a, b]
there is a δ(x) > 0 such that if I is a closed interval with x ∈ I and
|I| < δ(x), then I is in the collection. The corresponding covering
lemma is that an ordinary full covering of [a, b] contains a partition
of every closed subinterval. With the aid of the lemma two standard
monotonicity theorems are proved. If the lower derivate f ′(x)≥ 0 on
[a, b], then f is nondecreasing. If f ′(x)≥ 0 a.e. on [a, b] and if f ′(x)>
−∞ on [a, b], then f is nondecreasing. Next, a collection of closed
intervals is called an approximate full cover of [a, b] if to each x in
[a, b] there is a measurable set Ax having density 1 at x such that
every closed interval I with x in I and endpoints in Ax belongs to the
collection. The covering lemma in this case is obtained from the first
one by replacing “ordinary” by “approximate” and the monotonicity
theorems proved are those constructed by replacing f ′ by f ′

ap
in the

above monotonicity theorems. Other types of full covers are defended,
discussed and applied. Clifford E. Weil (E. Lansing, Mich.)
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MR0596326 (81m:26004) 26A24 26A45

Thomson, B. S.
On the derived numbers of VBG∗ functions.
J. London Math. Soc. (2) 22 (1980), no. 3, 473–485.
The author presents a perspective from which one can view a num-
ber of classical results related to the differentiation theory of real
functions. He begins by associating with each real-valued function f ,
defined on an interval I, a pair of measures ∆f ∗ and ∆f∗. These mea-
sures describe the total variation of f and carry information about the
derived numbers of f . He first proves Theorem 3.1: If f is continuous
on [a, b] and VBG* on a set X ⊂ [a, b], then ∆f ∗ is σ-finite on X and
∆f ∗(Y ) = ∆f∗(Y ) for every Y ⊂ X. He then proceeds to use these
measures to obtain a number of results related to absolute continuity,
existence of the derivative, vanishing of the derivative, versions of the
fundamental theorem of calculus and monotonicity theorems. Most of
these are rather deep classical results (or variants of such results), yet
they follow relatively easily by his methods. In particular, Theorem
3.1 stated above and its consequences play an important role in the
proofs.
{Reviewer’s remarks: This paper is apparently part of the author’s

program to unify a number of concepts in real analysis through the
use of differentiation bases. The reviewer has seen several preprints
on the subject and believes the program shows promise of clarifying
the ways in which a number of classical concepts interrelate and of
pointing to further directions of research. The term “differentiation
basis” does not appear explicitly in the paper under review. Instead,
the author uses the terms “full cover” and “fine cover”.}

A. M. Bruckner (Santa Barbara, Calif.)

MR0511583 (80m:28004) 28A15

Thomson, B. S.
On weak Vitali covering properties.
Canad. Math. Bull. 21 (1978), no. 3, 339–345.
Using the original method of R. de Possel [J. Math. Pures Appl. 15
(1936), 391–409; Zbl 15, 205], the author gives covering conditions
that are necessary and sufficient for a basis to differentiate a given
class of integrals. D. Preiss (Prague)
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MR0476979 (57 16524) 28A15

Thomson, B. S.
Measures generated by a differentiation basis.
Bull. London Math. Soc. 9 (1977), no. 3, 279–282.
The author shows how a new point of view can be taken in the
theory of differentiation of set functions. Instead of considering, as
usual, differentiation bases with special properties which guarantee
the existence of nice differentiation properties, one can start with an
abstract differentiation basis F and an outer measure µ. One then
defines certain auxiliary measures µλ and µν , and under rather mild
conditions one obtains density theorems for µ with respect to F at
µλ- and µν-almost every point. M. de Guzman (Madrid)

MR0463380 (57 3332) 26A42 28A25

Thomson, B. S.
A characterization of the Lebesgue integral.
Canad. Math. Bull. 20 (1977), no. 3, 353–357.
After J. Kurzweil [Czechoslovak Math. J. 7 (82) (1957), 418–449;
MR0111875 (22 #2735)] and the reviewer [Proc. London Math. Soc.
(3) 10 (1960), 281–303; MR0121460 (22 #12198); ibid. (3) 11 (1961),
402–418; MR0132147 (24 #A1994)] had independently characterized
Denjoy-Perron integration using Riemann sums but a limit different
from the norm-limit, E. J. McShane [A Riemann-type integral that
includes Lebesgue-Stieltjes, Bochner and stochastic integrals, Mem.
Amer. Math. Soc., No. 88, Amer. Math. Soc., Providence, R.I., 1969;
MR0265527 (42 #436)] characterized the case in which both f and |f |
are integrable, so that f is Lebesgue integrable, by altering the limit
slightly. McShane showed that this case is equivalent to a certain
absolute integrability, but did not prove directly the equivalence
to Lebesgue integration. The present author gives an interesting
direct proof of the equivalence of this absolute integrability and
Lebesgue integrability using Luzin’s criterion and the a.e. approximate
continuity criterion for measurability. Ralph Henstock (Coleraine)
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MR0422550 (54 10537) 28A10

Thomson, B. S.
Construction of measures in metric spaces.
J. London Math. Soc. (2) 14 (1976), no. 1, 21–24.
L’auteur appelle prémesure une fonction τ d’ensemble définie sur une
class C de sous-ensembles d’un ensemble Ω si ∅ ∈C, 0 ≤ τC ≤ +∞
pour C ∈C, et τ∅ = 0. Il appelle mesure une prémesure µ définie sur
tous les sous-ensembles de Ω et telle que A ⊂

⋃∞
i=1Bi implique que

µA≤
∑∞

i=1 µBi. Il appelle mesure métrique une mesure µ définie sur
un espace métrique Ω ayant la métrique ρ et telle que inf{ρ(x, y):x ∈
A, y ∈B}> 0 implique que µ(A∪B) = µA+µB.

Il indique diverses méthodes de construction de mesures métriques
à partir de prémesures, et compare ces mesures métriques entre elles.
Il considère le cas où la prémesure dont on part est la restriction
d’une certaine mesure métrique. Notons que ce que l’auteur appelle
mesure cöıncide avec ce que le rapporteur avait appelé fonction de
Carathéodory ou fonction carathéodoryenne [A. Appert, Rend. Circ.
Mat. Palermo. 12 (1963), 330–346; MR0169965 (30 #208)].

REVISED (1978)
A. Appert

MR0364586 (51 840) 28A15

Thomson, B. S.
Covering systems and derivates in Henstock divison spaces.
II.
J. London Math. Soc. (2) 10 (1975), 125–128.
In Part I [same J. (2) 4 (1971), 103–108; MR0294594 (45 #3664)] the
author used the idea of inner variation due to R. Henstock [Theory
of integration, Butterworths, London, 1963; MR0158047 (28 #1274)]
to develop a theory of derivates in a general setting. He now obtains
a Vitali property for the Henstock division systems by imposing an
appropriate halo assumption. S. J. Taylor
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MR0304607 (46 3742) 28A45

Thomson, B. S.
On McShane’s vector-valued integral.
Duke Math. J. 39 (1972), 511–519.
In this paper, E. J. McShane’s concept of “absolute integrability” [A
Riemann-type integral that includes Lebesgue-Stieltjes, Bochner and
stochastic integrals, Mem. Amer. Math. Soc., No. 88, Amer. Math.
Soc., Providence, R.I., 1969; MR0265527 (42 #436)] of a function on
I = Q× T (Q being a ring of subsets of a set T ) taking values in
a normed linear space is studied in a context derived mainly from
Henstock’s version of a generalization of the classical Riemann integral
[see R. Henstock, Proc. London Math. Soc. (3) 19 (1969), 509–536;
MR0251189 (40 #4420)]. Among other things, the author shows how
an additive absolutely integrable function on I taking values in a
Banach space in a decomposable partitioning system can give rise
to a countably additive vector measure on a semitribe of measurable
subsets of T . A. Mukherjea

MR0304601 (46 3736) 28A25

Thomson, B. S.
A theory of integration.
Duke Math. J. 39 (1972), 503–509.
The author presents an account of the ideas fundamental to a theory
of integration investigated by R. Henstock [Theory of integration, But-
terworths, London, 1963; MR0158047 (28 #1274)] and E. J. McShane
[A Riemann-type integral that includes Lebesgue-Stieltjes, Bochner and
stochastic integrals, Mem. Amer. Math. Soc., No. 88, Amer. Math.
Soc., Providence, R.I., 1969; MR0265527 (42 #436)]. The author (like
Henstock) constructs an outer measure in a decomposable division
system and obtains a monotone convergence property for measures
satisfying a regularity assumption. Then he constructs an upper inte-
gral that gives rise to a theory of integral in a standard manner. The
paper concludes with a brief application of the theory to integration
in locally compact spaces. A. Mukherjea
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MR0299751 (45 8799) 28A45 26A39

Thomson, B. S.
On the Henstock strong variational integral.
Canad. Math. Bull. 14 (1971), 87–99.
The main purpose of the author is to construct a theory of the Hen-
stock strong variational integral [R. Henstock, Proc. London Math.
Soc. (3) 19 (1969), 509–536; MR0251189 (40 #4420)] which, while
slightly less general, is simpler and sufficient for most applications.
Let T denote a set, J a collection of sets of the form (I, x) with I ⊂
T and x ∈ T , D is said to be a division if D is a finite subset of J and
the I for which (I, x) ∈D are disjoint sets. Let σ(D) =

⋃
{I: (I, x) ∈

D}. A set in σ(D) is called an elementary set. If X ⊂ T and S ⊂
J then S(X) = {(I, x) ∈ S: I ⊂ X} and S[X] = {(I, x) ∈ S:x ∈ X}.
(T,A, J) is called a division space if A is a collection of subsets of
J such that every S ∈ A contains a division of each elementary set;
moreover if S1 and S2 are in A, there exists some S ∈ A such that
S ⊂ S1∩S2. A division space (T,A, J) is decomposable if for every se-
quence of disjoint subsets Xk of T and each Sk ∈ A, there exists an
S ∈ A such that S[Xk]⊂ Sk[Xk]. The property of being decomposable
plays a role similar to countable additivity in measure spaces. An ex-
ample of a division space is provided by T =Rn, J = {[a, b), χ} where
x ∈ [a, b] and A = {Sδ: δ > 0}, Sδ being the set of all {[a, b), χ} with
x ∈ [a, b] and [a, b] being a subset of the sphere of center x and radius
δ. The following functions play an important role. Let h be a func-
tion defined on J with values in a normed linear space. For S ⊂ J , set
V (h, S) = sup(D)

∑
‖h(I, x)‖, where the sup is taken over all D ⊂ S

and where (D)
∑

denotes summation over all (I, x) ∈ D, an empty
sum being zero. Let A(X) = {S(X):S ∈ A}, A[X] = {S[X]:S ∈ A}.
V (h,A′) = inf V (h, S) where the inf is taken over S ∈ A′ and A′ is a
family of subsets of J , V (h, S,X) = V (h, S[X]), h∗(X) = V (h,A[X]).
The first theorem shows that h∗ (defined on subsets of T ) behaves
like an outer measure and that the countable subadditivity holds if
(T,A, J) is decomposable. A function H defined on elementary sets
of (T,A, J) with values in a normed linear space is said to be addi-
tive if H(E) = (D)

∑
H(I), where I ∈D and D is a division of E. H

then can be defined on J by H(I, x) =H(I).
Finally h is said to be integrable on (T,A, J) if there exists an

additive H such that V (H − h,A) = 0; one writes
∫
h = H,

∫
E h =

H(E). If V (h,A)<+∞ then h is said to be summable. An important
special case is provided by the following: If E,F,G are Banach spaces
and u is a bilinear function from E × F into G with |u(x, y)| ≤
|x||y|, let m map J into F and let f be a function from T into E;
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let fm(I, x) = u(f(x),m(I, x)) ∈ G. The space LE(m) is defined to
consist of all functions from T into E which are summable with ‖f‖m =
V (|f ||m|,A) <∞. LE(m) has properties similar to m-summable E
valued functions, in particular (S,A, J) being decomposable implies
that LE(m) is complete in the semi-norm ‖(·)‖m. As an application
of the general theory the case of integration on locally compact spaces
is considered and a representation theorem for dominated linear maps
on E-valued functions with compact support is obtained.

A. de Korvin


