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Rational function minimization
Let p, q and p1, . . . , pk be polynomials with real
coefficients defined on IRn. (p and q relatively prime.)

We will consider the optimization problem:

p∗ := inf
x∈S

p(x)

q(x)

where S is the semi-algebraic set given by

S := {x ∈ IRn : pi(x) ≥ 0, i = 1, . . . , k} .

Applications: Global and combinatorial optimization,

statistics, geometry, economics ...
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Possible approaches
• If the infimum is attained one can solve the first

order optimality condition equations. Excellent

review: B. Sturmfels, Solving Systems of Polynomial Equations,

AMS, 2002. If the inf is not attained ...

• Global optimization codes — can converge to
local minima.

• Today’s talk: approaches involving semidefinite
programming (SDP).
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Different cases
We investigate SDP-based approaches for the
following cases:

• S = IRn and n = 1 (Unconstrained minimization:
univariate case);

• S = IRn and n = 2 (Unconstrained minimization:
bivariate case);

• S = IRn and general n (Unconstrained
minimization: general case);

• S is compact, connected and general n
(Constrained case);
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Unconstrained case
Consider the unconstrained problem.

p∗ := inf
x∈IRn

p(x)

q(x)

= sup

{

ρ :
p(x)

q(x)
− ρ ≥ 0 ∀x ∈ IRn

}

We can replace the nonnegativity condition by a sim-

pler one ...
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Unconstrained case (ctd)
Theorem (Jibetean) Assume p∗ > −∞. Then q does
not change sign on IRn.

If q does not change sign one
has:

p(x)

q(x)
− ρ ≥ 0 ∀x ∈ IRn

iff
p(x)− ρq(x) ≥ 0 ∀x ∈ IRn.

D. Jibetean. Global optimization of rational multivariate functions.

Technical Report PNA-R0120, CWI, Amsterdam, 2001.

This leads us to the theory of nonnegative polynomials.
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Preliminaries
Let p be a polynomial defined on IRn.

• p is a sum of squares (SOS) if there exist
polynomials pi such that p =

∑

i p
2
i .

• p is a form if it is homogeneous (all monomials
have the same degree).

• A form p is positive semidefinite (PSD) if
p(x) ≥ 0 for all x ∈ IRn.

• A form p is positive definite (PD) if p(x) > 0 for
all x ∈ IRn \ {0}.
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Homogenization
Each polynomial has an associated form, obtained by
introducing a new homogenizing variable t as follows:

p(x)⇒ p
(x

t

)

tdeg(p)

where deg(p) is the degree of p.

Example:

x2 − 2x+ 1⇒ x2 − 2xt+ t2.

Nonnegativity and SOS properties are preserved
under this transformation.
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Hilbert’s 17th problem
Conjecture by Hilbert in 1900: Let p be a real PSD
form on IRn.

Then there exist polynomials qi and ri
such that

p(x) =
∑

i

(

qi(x)

ri(x)

)2

.

(A PSD form is a sum of squares of rational
functions.)

• Artin proved the conjecture in full in 1927.
• Review paper: B. Reznick. Some concrete aspects of Hilbert’s

17th Problem. In Real algebraic geometry and ordered

structures, 251–272. AMS, 2000.

Global minimization of rational functions using semidefinite programming – p.9/29



Hilbert’s 17th problem
Conjecture by Hilbert in 1900: Let p be a real PSD
form on IRn. Then there exist polynomials qi and ri
such that

p(x) =
∑

i

(

qi(x)

ri(x)

)2

.

(A PSD form is a sum of squares of rational
functions.)

• Artin proved the conjecture in full in 1927.
• Review paper: B. Reznick. Some concrete aspects of Hilbert’s

17th Problem. In Real algebraic geometry and ordered

structures, 251–272. AMS, 2000.

Global minimization of rational functions using semidefinite programming – p.9/29



Hilbert’s 17th problem
Conjecture by Hilbert in 1900: Let p be a real PSD
form on IRn. Then there exist polynomials qi and ri
such that

p(x) =
∑

i

(

qi(x)

ri(x)

)2

.

(A PSD form is a sum of squares of rational
functions.)

• Artin proved the conjecture in full in 1927.

• Review paper: B. Reznick. Some concrete aspects of Hilbert’s

17th Problem. In Real algebraic geometry and ordered

structures, 251–272. AMS, 2000.

Global minimization of rational functions using semidefinite programming – p.9/29



Hilbert’s 17th problem
Conjecture by Hilbert in 1900: Let p be a real PSD
form on IRn. Then there exist polynomials qi and ri
such that

p(x) =
∑

i

(

qi(x)

ri(x)

)2

.

(A PSD form is a sum of squares of rational
functions.)

• Artin proved the conjecture in full in 1927.
• Review paper: B. Reznick. Some concrete aspects of Hilbert’s

17th Problem. In Real algebraic geometry and ordered

structures, 251–272. AMS, 2000.

Global minimization of rational functions using semidefinite programming – p.9/29



Nonnegativity vs SOS
Consider real n-variate polynomials with degree d.
Nonnegativity and sum of squares are the same if:

• n = 1 (univariate polynomials) (result by
Markov?);

• d = 2 (quadratic polynomials on n variables);
• n = 2 and d ≤ 4 (bivariate polynomials of degree

at most 4) (result by Hilbert);

In all other cases counterexamples exist (e.g. the

Motzkin form; see Reznick’s paper).
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The sum of squares cone
We fix a basis of monomials

x̃ := (1, x1, . . . , xn, x
2
1, . . . , x

d
n) dim:

(

n+ d

d

)

.

Notation: We denote the cone in IR(n+2d

2d ) generated
by squares of polynomials on IRn of degree at most d
by Σ2

n,d (sum-of-squares (SOS) cone).

(We drop the subscripts when they are clear from the

context.)
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The sum of squares cone (cdt.)
Theorem: The cone Σ2

n,d is convex, closed,
pointed, solid, and is the image of a linear map of
the cone of PSD matrices of size

(

n+d
d

)

×
(

n+d
d

)

.

Theorem 17.1 in Y. Nesterov. Squared functional systems and

optimization problems. In J.B.G. Frenk et al. eds., High

performance optimization, 405–440. KAP, 2000.

Implication: Conic linear optimization over the
cone Σ2

n,d can be done using semidefinite
programming (SDP) (the so-called Gram matrix
method);
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Example (Parrilo)
Is P (x) := 2x4

1 + 2x3
1x2 − x2

1x
2
2 + 5x4

2 a sum of
squares?

P (x) =





x2
1

x2
2

x1x2





T 



2 −λ 1

−λ 5 0

1 0 −1 + 2λ









x2
1

x2
2

x1x2



 .

If we call the 3× 3 matrix in the last expression
M(λ), then M(λ) defines an affine space.

SDP problem: is there a λ such that M(λ) º 0 (posi-

tive semidefinite)?
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Example (ctd.)
for λ = 3, M(λ) is positive semidefinite, and

M(3) = LTL, L =
1√
2

[

2 −3 1

0 1 3

]

,

and consequently

P (x) = x̃LTLx̃ = ‖Lx̃‖2,

where x̃ = [x2
1 x2

2 x1x2]
T .

Thus P can be written as a sum of squares.
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Unconstrained univariate case
If q does not change sign on IR, then

inf
x∈IR

p(x)

q(x)
= sup

t,x

{t : p(x)− tq(x) ≥ 0 ∀x ∈ IR}

= sup
t,x

{

t : p(x)− tq(x) ∈ Σ2
}

= sup
t,x

{

t : p(x)− tq(x) = x̃TMx̃
}

for some M º 0, where

x̃T = [1 x x2 . . . x
1

2
max{deg(p),deg(q)}].
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Unconstrained univariate case
Let p(x)− tq(x) =

∑

α aα(t)x
α. NB: aα(t) is affine

in t.

Then the optimization problem becomes:
maximize t such that

aα(t) =
∑

i+j=α

Mij, M º 0.

This is an SDP problem! (Result already obtained by
Nesterov for q(x) ≡ 1.)

Y. Nesterov. Squared functional systems and optimization problems.

In J.B.G. Frenk et al. eds., High performance optimization, 405–440.

KAP, 2000.
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Example

p(x)

q(x)
:=

x2 − 2x

(x+ 1)2
.

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−50

0

50

100

150

200

250

300

350

(x
2  −

2x
)/

(x
+

1)
2

x

Global minimization of rational functions using semidefinite programming – p.17/29



Example (ctd)

p(x)

q(x)
:=

x2 − 2x

(x+ 1)2
.

Equivalent problem: sup t such that

(1−t)x2−2(1+t)x−t =
[

1

x

]T [
M00 M01

M10 M11

] [

1

x

]

,

(1)

for some M º 0.
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Example (ctd)
From (2):

M00 = −t, M01 = M10 = −(1 + t), M11 = 1− t.

We therefore get

min
x∈IR

p(x)

q(x)
= max

t,M
t

such that

M =

[

−t −(1 + t)

−(1 + t) 1− t

]

º 0.

Note that the optimal value is p∗ = −1/3.
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Unconstrained bivariate case
If q does not change sign on IR2, then

inf
x∈IR2

p(x)

q(x)
= sup

t,x

{

t : p(x)− tq(x) ≥ 0 ∀x ∈ IR2
}

Remark: This problem also has an exact SDP
reformulation, using results by De Klerk and
Pasechnik, and by Nesterov.

E. de Klerk, D.V. Pasechnik (2002). Products of positive forms, linear

matrix inequalities, and Hilbert 17-th problem for ternary forms. Euro-

pean J. of Operational Research, to appear.
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Constrained case
Consider a semi-algebraic set

S = {x ∈ IRn : pi(x) ≥ 0 (i = 1, . . . , k)} .

General constrained problem: find

p∗ =: inf
x∈S

p(x)

q(x)
.

(We will return to the unconstrained problem

presently.)
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Constrained case
Theorem (Jibetean) Assume that S is full
dimensional and connected. If p∗ > −∞ then q does
not change sign on S. If q does not change sign on S,
then

p(x)

q(x)
≥ α ∀x ∈ S ⇐⇒ p(x)− αq(x) ≥ 0 ∀x ∈ S.

D. Jibetean. PhD Thesis, CWI, Amsterdam, 2003.

Consequence

inf
x∈S

p(x)

q(x)
= sup {ρ : p(x)− ρq(x) > 0 ∀x ∈ S} .
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Constrained univariate case
Univariate constrained problem: Assume q does not
change sign on IR2 (else p∗ = −∞). Then

p∗ =: inf
x∈S

p(x)

q(x)
= sup {ρ : p(x)− ρq(x) > 0 ∀x ∈ S} ,

where S is a line segment or an interval.

Remark: This problem has an exact SDP reformula-

tion using the theorem by Jibetean and results by Nes-

terov.
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Constrained multivariate case
Technical assumption: S is compact and there exists
a

p̄ ∈ Σ2 + p1Σ
2 + . . .+ pkΣ

2

such that {x : p̄(x) ≥ 0} is compact.

Theorem (Putinar): For a given polynomial p0 one
has p0(x) > 0 for all x ∈ S iff

p0 ∈ Σ2 + p1Σ
2 + . . .+ pkΣ

2.

M. Putinar. Positive polynomials on compact semi-algebraic sets. Ind.

Univ. Math. J. 42:969–984, 1993.
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Constrained multivariate case
Consider the minimization problem

p∗ = inf
x∈S

p(x)

q(x)
.

By Putinar’s and Jibetean’s theorems we have

p∗ = sup {ρ : p(x)− ρq(x) > 0 ∀x ∈ S}
= sup

{

ρ : (p− ρq) ∈ Σ2 + p1Σ
2 + . . .+ pkΣ

2
}

≥ sup
{

ρ : (p− ρq) ∈ Σ2

n,t + p1Σ
2

n,t + . . .+ pkΣ
2

n,t

}

:= ρt (for any integer t ≥ 1).
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Constrained multivariate case
We have that ρi ≤ ρi+1 ≤ p∗ and

lim
t→∞

ρt = p∗.

Computation of ρt: SDP problem with matrices of
size

(

n+t
t

)

×
(

n+t
t

)

and at most max{deg(p), deg(q)}
constraints — "polynomial" complexity for t = O(1).

These results by already obtained by Lasserre for
q(x) ≡ 1 (polynomial objective function).

J.B. Lasserre. Global optimization with polynomials and the problem of

moments. SIOPT, 11:296–817, 2001.
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Unconstrained case
Return to the unconstrained case

inf
x∈IRn

p(x)

q(x)
.

Artificial constraint ‖x‖2 ≤ R for some ‘sufficiently
large’ R.
Now we have minx∈S

p(x)
q(x) where S is the compact

semi-algebraic set

S :=
{

x ∈ IRn : R− ‖x‖2 ≥ 0
}

.

No a priori choice for R available in general.
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Software
• Lasserre’a approach implemented in the software

GloptiPoly.

• Extended Gram matrix method implemented in
SOStools by Parrilo et al.

These are add-on routines for the SDP solver SeDuMi
by Sturm. All freely available via Helmberg’s SDP
page:

http://www-user.tu-chemnitz.de/∼helmberg/semidef.html

GloptiPoly and SOStools extremely useful to prove

global optimality in small problems.
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Discussion
• We have extended results by Nesterov and

Lasserre to include rational objective functions.

• Techniques from real algebraic geometry
available to compute all KKT points, but SDP
approach computationally attractive.
See: P. Parrilo and B. Sturmfels. Minimizing polynomial

functions, 2001. (Available at arXiv.org e-Print archive)

• SDP approach competitive with state-of-the-art
global optimization software.

• Need for large-scale (parallel?) SDP solvers to
solve the large SDP relaxations.
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