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CHAPTER I

Background

In discrete optimization problems, an objective function is given on a large finite
set. The goal is to find “good” (say particularly large or small) values efficiently.

Computational complexity theory has identified a class of problems which are
called NP-complete. The NP-complete problems contain many of the combinatorial
problems that arise in practice, such as in operations research, but seem to be difficult
to solve efficiently. The famous P = N P? question, which asks whether there is any
polynomial time algorithm for NP-complete problems, remains the central problem in
computational complexity. However, there is considerable progress in understanding
NP-complete problems by using tools such as approximation, randomness and non-
polynomial algorithms.

The goal of this thesis is to introduce a method of studying the distribution of ob-
jective values for (usually NP-complete) combinatorial optimization problems defined
on groups. This approach shows us some very general, yet non-trivial properties of
the optimization function. In particular, it allows us to produce guarantees for sim-
ple polynomial and non-polynomial approximation algorithms, evaluate heuristics,
and helps us understand why some hard problems are simpler than others.

We focus on two important examples of combinatorial optimization problems, the



Quadratic Assignment Problem (QAP) and the Traveling Salesman Problem (TSP).
We obtain results on both the frequency and location of good values.

Our approach is to use techniques from representation theory (see Section 3.2).
The main object of study is the function obtained by averaging the objective function
on the conjugacy classes of permutations.

This Chapter contains background material, including definitions and some his-
tory. We state our main results in Chapter II. The necessary results from representa-
tion theory and the proofs are in Chapter III. Discussion and some ancillary results,
including computational data and comments on derandomization, are included in

Chapter IV.

1.1 Problem Definitions

Let Mat,, be the vector space of all real n x n matrices A = (a;5), 1 < 4,5 < n.
The input data for a QAP is a pair of matrices in Mat,; we refer to such a problem
as having size n. To measure the complexity of an algorithm, we count the number
of arithmetic operations performed (see for example [AHU74]). This is the usual
model of complexity if the data is integer, and can also be used with real numbers
[BCSS97]. From now on, we assume that n > 4.

Let S, be the group of all permutations o of the set {1,... ,n}. We are interested
in the action of S,, on the space Mat, by simultaneous permutations of rows and
columns: we let 0(A) = B, where A = (a;;) and B = (b;;), provided by()0(j) = aij
for all 4,5 = 1,... ,n. Notice that (07)A = o(7A) for any two permutations o and
7. There is a standard scalar product on Mat,,:

<A, B) = trace(ABt) = Z aijbij, where A= (aij) and B = (bZ])

ij=1



Definition 1.1.1. Let us fix two matrices A = (a;;) and B = (b;;) and let us consider
a real-valued function f : S,, — R defined by
n n
f(o) = (B,a(4) = Y bototiy@ij = D bijao1(01(5 (1.1)
ij=1 ij=1
The problem of finding a permutation ¢ where the maximum or minimum value of
f is attained is known as the Quadratic Assignment Problem (QAP). It is one of the
hardest problems of Combinatorial Optimization.
We say that a QAP is symmetric if the matrix A is symmetric. If B is symmetric,

but A is not, then we can switch their roles to get a symmetric problem.
The QAP is a special case of a more general problem.

Definition 1.1.2. Suppose we are given a 4-dimensional array (tensor) C' = {cﬁfl :
1<4,5, k1 < n} of n* real numbers. The general problem is to optimize the function
f is defined by:
n
flo)y=> s i) (1.2)
ij=1
If cfl = a;jby; for some matrices A = (a;;) and B = (by;), we get the special case
(1.1) we started with. The convenience of working with the generalized problem is
that the set of objective functions (1.2) is a vector space.
We say that the generalized QAP defined by C' = (czjl) is symmetric if c;cl = 017;1 for

all 2,5, k,1=1,2,... ,n.
1.1.1 Motivation for the QAP

Many natural optimization problems can be formulated as QAP’s. In fact, the QAP
was first posed by the economists Koopmans and Beckmann [KB57]|. They consider

assigning n facilities to n locations so as to minimize the total cost. Costs arise



from transporting materials between facilities; they are proportional to the “flow”
of goods a;; required from facility ¢ to facility j and the distances by; from location
k to location [. Then for a given assignment o of facilities to locations, the total
transportation cost is the sum of these costs over all pairs of facilities, equal to the
objective function (1.1).

Koopmans and Beckmann also consider a linear cost term d;;, for building facility

7 at location k. Then the Koopmans-Beckmann formulation of the QAP objective is:
n n
flo) = Z bo(iyo(s) @ij + Zdio(i) (1.3)
ij=1 i=1
In some circumstances (for example, if the matrix D = (d;;) has rank 1, and either
A = (a;;) or B = (b;;) has zero diagonal), the linear term can be absorbed into the
quadratic term by modifying the diagonals of A and B. In general, the equation
(1.3) can be considered as a special case of the tensor (1.2) by adding the constants
dix to the “diagonal” terms c¥.

Lawler [Law63] introduced the generalized objective function (1.2) in the context
of management science. This general problem is hard to handle in practice, because
a problem of size n is given by a tensor of n* numbers, which is expensive to store
and manipulate. Since the general problem has not shown a substantial advantage in
modeling practical problems, most work is done on the special cases (1.1) and (1.3),

which require only O(n?) storage.

Definition 1.1.3. One of the most prominent problems in computational complex-
ity is the Traveling Salesman Problem (TSP). For combinatorial optimization, the TSP
is considered as an optimization problem on the the complete graph on n vertices,
K,. A weight is assigned to each edge, and the objective is to find the Hamiltonian

cycle (a cycle containing all n vertices) with maximum sum of weights on its edges.



It is natural to describe a cycle on the vertices {1,2,...,n} as a permutation
giving the order in which the vertices are visited. This allows us to reduce the

symmetric TSP to the (symmetric) QAP. Take:

( 0 1 0O ... 0 1\
1 0 1 ... 0 0
0o 1 0 ... 0 O 1 if i—j]=1 modn

A == y a/ij =
0 otherwise

0 0 0O ... 0 1

\ 1 0 0o ... 1 0/

This encodes the cycle (1,2,...,n). The action of permuting the rows and columns

of A by o permutes the cycle to 0. The edge weights are entered in a symmetric
matrix B:

bij = %(Weight of edge {i,;})
Then (B, o(A)) gives the weight of cycle o.

Similarly, the asymmetric TSP reduces to an asymmetric QAP. Take:

/O 1 0O ... O 0\
0 0 1 ... 0 O
0 0 0O ... 0 0 1 if j—2=1 modn
A: s a’ij:
0 otherwise
0 0 0O ... 0 1
\1 0 0O ... O 0/

Let B the contain the (asymmetric) weights:
bi; = Weight of edge (3, j)

Then (B,0(A)) gives the weight of cycle o.



Definition 1.1.4. It is interesting to compare the QAP to the Linear Assignment

Problem (LAP) of maximizing:

flo) = Zdia(i) (1.4)

This models the problem of assigning n jobs (to be executed in parallel) to n proces-
sors, where the cost of running job ¢ on processor j is d;;. In this example, the
objective is to minimize the sum of the costs.

The LAP is again an optimization problem on the set of permutations. However,
there is a well known polynomial time algorithm for the LAP, called the Hungarian

Algorithm described in [Kuh55].

There are three special cases of the QAP that reduce to the LAP. First, if A in
(1.1) has constant columns, then o acts on A by permuting these columns, and the
objective function is:

n n
F(@) =) aibotirotiy = Y aribotioti
ij=1 ij=1

This reduces to the LAP (1.4) defined by the matrix D = (d;;) where:

n
dj = E a15bk
k=1

Then the objective functions (1.1) and (1.4) coincide:
n n
flo) = Z dig(i) = Z 050 i)o(5)
i=1 ij=1
Similarly, consider a generalized problem (1.2), where for any £ and [ the matrix
A = (a;;) given by a;; = c;gl has constant columns. Then for any permutation o, the

objective value is:

_ ij _ 1j
flo)=>Y_ Coli)olj) — > Coli)oj)

i,j=1 ij=1



To reduce to the linear assignment problem, we take the matrix D = (d;;) to be

defined by:
n
di =Y ¢
k=1
Now if A in (1.1) has constant rows, then ¢ acts on A by permuting rows. We

reduce to (1.4) by taking D = (d;x) given by:

n
di, = E @i1bp
=1

For the generalized problem (1.2), if for all £ and /, the matrix A = (a;;) given by

a;; = cg has constant rows, we reduce to the LAP by defining D = (dy) by:

n
di =Y cii
=1
Finally, if A is a diagonal matrix, we get an LAP by defining D = (d;;) as:
dik = iibrr,

And if in (1.2), for all £ and [/, the matrix A = (a;;) is diagonal, we reduce to to the
LAP by defining D = (d;) as:
dig = ¢y

We can separate an arbitrary QAP into a linear component and a “pure quadratic”
component. Given a problem of type (1.1), we decompose the matrix A into A =
A1+ Ay, where Ay is the projection of A into the vector space spanned by the matrices
with constant rows, the matrices with constant columns, and the diagonal matrices.
We call the QAP defined by (A;, B) the linear part of the problem. If A = A;, then the
QAP defined by (1.1) can be decomposed into the three linear components described
above, and hence reduced to the LAP. For a generalized problem of type (1.1) defined

by the tensor C = (c;cjl), we write C' = C7 + Cy, where (] is the projection of C' into



the vector space spanned by tensors where for all k, ! the matrices A = (a;;) = (c}fl)
have constant columns, tensors where all such A have constant rows, and tensors
where all such A are diagonal. We call C; the linear part of the problem, and note
that if C' = Cy, then the problem (1.2) reduces to the LAP. We give formulas for
computing A; (or C4) given A (or C) in Section 3.2.3.

The remaining component (Asg, B) for a problem of type (1.1) defines a QAP. We
call this the pure component of the QAP. In particular we call a QAP pure if in the
decomposition above we have A = A,. We note that Ay must have constant row and
column sums, and a constant diagonal. Similarly, for the generalized problem (1.2),
the component C' defines the pure component of the QAP, and we call a generalized
problem pure if in the decomposition we have C' = C,. For any k,l the matrix
A = (4;) = (Cy)? must have constant row and column sums, and a constant

diagonal.

Definition 1.1.5. We introduce the standard Hamming metric on the symmetric
group S,. For two permutations 7,0 € S, let the distance dist(co, 7) be the number

of indices 1 < ¢ < n where o and 7 disagree:
dist(o,7) = |i : 0(i) # 7(3)|-
One can observe that the distance is invariant under the left and right actions of S,,:
dist(oo1, 009) = dist(o1, 09) = dist(o10, 020)
for all 01,00,0 € 5,,.

If we are modelling a problem using the QAP (such as the facility location example
introduced in Section 1.1.1), then permutations are nearby in the Hamming distance
if they involve making many of the same assignments. The Hamming distance is ex-

actly the number of assignments that differ between the permutations. In particular,



the distance does not depend on the choice of the numbering of the plants from the
set {1,2,...,n}, since the distance is invariant under conjugation by any permutation
w:

dist(o, 7) = dist(wow™ !, wrw™)

In this case, w permutes the labels of the plants.

The notion of “nearness” measured by the Hamming distance is appropriate for
the context of a heuristic “local search” approach to solving an optimization problem
on permutations. We discuss heuristic approaches to the QAP in Section 4.2.

There are several other metrics on S, see for example chapter 6B of [Dia88|.
Most do not make sense for our problem (for example, they change substantially
under relabeling). One metric that is quite similar to the Hamming metric is the
Cayley metric of the (generating) set of all transpositions. This metric counts the
minimum number of 2-cycles (transpositions) required to change 7 to 0. Our results

would not look too different if we used the Cayley metric.

Definition 1.1.6. For a permutation 7 and an integer £ > 1, we consider the “k-th
ring” around T:

U(r,k) = {o € S, : dist(o,7) =n — k}.

Hence for any permutation 7 the group S,, splits into the disjoint union of n rings

U(r, k) for k=0,1,2,... ,n—2,n.

The innermost ring U(7,n) contains the single permutation 7, and the next ring
U(r,n—2) has <Z> permutations that differ from 7 by a swapping a pair of elements
(that is, by a 2-cycle). The size of the ring U(7, k) increases as k decreases, and most
of the permutations are contained in the outermost rings. In Lemma 3.4.2, we show

n!
that the number of permutations in the outermost ring U(7,0) is at least 3 for
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n > 2. Using this fact, it is easy to show that the number of permutations in the

n! n!

ring U(7, k) is between — and —

3% Pk see the proof of Lemma 3.4.3.

Definition 1.1.7. Let f : S, — R be a function of type (1.1) or (1.2). Let

F= 3 f0)

g€Sy

be the average value of f on the symmetric group and let
fo=f—-f

be the “shifted” function. Hence the average value of f, is 0. Let 7 be a permu-
tation where the maximum value of f; is attained, so fo(7) > fo(o) for all o € S,
and fo(7) > 0 unless fy = 0 (the problem with minimum instead of maximum is

completely similar).

We remark that it is easy to compute the average value f (see Lemma 3.1.1).

1.1.2 Objectives
We are interested in the following two types of questions:

i. What fraction of the objective values are relatively large (close to optimal)?
Specifically, given a constant 0 < v < 1 possibly depending on n, how many

permutations o € S, satisfy fo(o) > vfo(7)?

ii. Where are other relatively large values located with respect to the optimum?
Specifically, how does the average value of fy over the k-th ring U(7, k) compare
with the optimal value fy(7)? In particular, is a random permutation from the
vicinity of the optimal permutation better than a random permutation from

the whole group S,,7
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The answer to the first question tells us how well the sample optimum of a set
of randomly chosen permutations approximates the true optimum. The answer to
the second question gives us information on how we can understand the problem
heuristically — whether to look for large values near other large values, or to sample

permutations as broadly as possible.

Definition 1.1.8. We introduce a function v(m) that occurs in our results. For an

integer k£ > 0, let

i 1
di =) (-1
j=0 J
For k > 2 let
dm72
v(m) = i

It is convenient to agree that ©(0) = 0 (and v(1) is not defined). One can see that
lim v(m)=1

m—+400

and that 0 < v(m) < 1if misodd and 1 < v(m) < 2if m > 2 is even.

Definition 1.1.9. The following functions p and ¢ on the symmetric group S,, play
a special role in our approach. For a permutation o € S,, let p be the number of

fized points of o

and let ¢ be the number of transpositions (or 2-cycles) in o:
tlo)=li<j:o(@)=j and o)) =i

One can show that p(c), p?(c) and t(o) are functions of type (1.2) for some

particular tensors {c};}, see Remark 3.2.5.

In the next two sections, we highlight some of the work that has been done on the
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TSP and QAP. We mention both theoretical approximation results (guarantees and

hardness) and empirical data.

1.2 Remarks on the TSP

The TSP is one of the most studied NP-complete problems, due to its long history,
frequent occurrence in practical situations, and accessibility to non-specialists. Some
notes on the early history of the TSP are found in [ABCC98]. The NP-completeness of
the TSP decision problem was shown in Karp’s famous paper on reducibility [Kar72].

The important ideas in complexity theory of reductions and completeness, were
originally used (for example in Karp’s paper) in the context of “decision problems”,
that is problems with a ‘yes’ or ‘no’ answer. The TSP decision problem is to determine
if a given graph has any Hamiltonian cycle. We are interested in the TSP optimization
problem of finding a cycle of maximum (or minimum) weight. For the optimization

problem, we can assume that weights are given on the complete graph, K.

1.2.1 Complexity of Optimization Problems

The ideas of reductions and completeness can be extended from decision prob-
lems to optimization problems, see for example [ACGT99]. More detailed complexity
information is available from optimization problems than from the corresponding de-
cision problems. In particular, optimization problems can be compared with respect
to the degree of approrimation possible in polynomial time. A variety of behaviors
are observed among optimization problem whose decision problems are NP-complete,
including both positive approximation results and negative completeness results.

However, it is tricky to work with optimization problems because they are sen-
sitive to formulation. A given decision problem may have several natural analogous

optimization problems with very different behaviors with respect to approximation.
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Consider the case of the TSP. An approximation algorithm will return a permu-

tation o which we expect to have objective value comparable to that of the optimal
f(o)
f(7)

ratio is meaningful, we can not allow arbitrary edge weights, because the optimal

permutation 7, that is, the ratio should be close to one. To ensure that this

value could be zero (for example).
One way to fix this is to assume that all the weights are positive. Then the

TSP minimization problem is NPO-complete, that is any polynomial time algorithm
f(o)
f(7)

This is the strongest type of non-approximability result.

guaranteeing a value o with < 27" for some k > 0 implies P = NP [ACG199].

In contrast, the (asymmetric) TSP mazimization problem with positive weights
. N o . flo) _ 8 1
admits a polynomial time constant approximation guaranteeing “—= > —(1 — —)
f(r) — 13 n
where n is the size of the problem [Bl&02]. If the TSP is symmetric, this can be
improved to 3/4 [Ser84], and there is a randomized algorithm which returns a solution
with expected ratio r for any ratio r < 25/33 [HR00]. Reportedly, these ratios have

recently been improved to 5/8 [LS] in the asymmetric case, and 7/8 in the symmetric

case.

1.2.2 Approximation With Respect to the Average

Our approach is to look at approximation results with respect to the average
function value over all permutations. In the cases of TSP and QAP, it is easy to
compute the average over all permutations, see Lemma 3.1.1. Equivalently, we can
consider a normalized maximization problem with average value on all permutations
of 0. In this case some edge weights will be negative.

Our results show that this zero average problem is not as difficult as the positive

weights minimization problem. At the same time, it does not appear to be as easy
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as the positive weight maximization problem, where greedy algorithms can already

give a good approximation.

1.2.3 Empirical Results

There is a large body of empirical results on the TSP. These consist of difficult TSP
instances that have been proposed and provably solved (or not) to optimality. Many
problems of this type are two-dimensional Euclidean problems, where the input is
a set of points in the plane. These problems can be attacked very effectively with
geometric heuristics, and it is now common to see problems on more than 10,000
points solved. See for example [ABCCO1].

In fact, Arora has shown [Aro98] that a grid-based algorithm can be used to
construct a polynomial time approximation scheme (PTAS) for the Euclidean TSP
in fixed dimension. A PTAS gives, for any € > 0, some polynomial time algorithm
(with running time depending on €) which guarantees a (1 — €) approximation for
the minimum.

Less empirical work has been done on non-Euclidean and asymmetric instances
of the TSP. An interesting survey of asymmetric TSP’s drawn from various sources is
[MP91]. In these experiments, various asymmetric TSP’s are solved, some random,
some structured. The authors report success in solving randomly generated problems
on thousands of nodes using branch-and-bound heuristics, as well as some structured
problems of similar sizes.

More recently [CJMZ01] studied heuristics on a variety of difficult (some random,
some structured) asymmetric TSP instances. They routinely solve problems on 100

nodes, and are usually able to solve problems of size 1000.
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1.2.4 Non-polynomial Algorithms

To help understand the complexity of problems, we can also consider the per-
formance of non-polynomial algorithms. The TSP can be solved in time O(n?2") by
dynamic programming. This is not polynomial, but is substantially faster than the

O(n!) required to enumerate the solutions.

1.3 Remarks on the QAP

Like the TSP, the QAP is known as one of the most difficult problems in combina-

torial optimization. A good recent survey of the QAP literature is [BCPP99].

1.3.1 Complexity Results for QAP

We noted in Section 1.2 that the QAP generalizes the TSP. Hence QAP is at least
as hard as TSP, and the hardness results we have for TSP apply to QAP. For example,
minimizing the QAP with positive weights is NPO-complete [ACGT99].

In fact, the QAP appears much more difficult than the TSP both theoretically and
practically. There are few positive approximation results for special cases of the QAP.

For the problem of maximizing a QAP with positive coefficients, we can get a
trivial approximation guarantee of 1/n? by picking a permutation which includes the
largest possible single term in the objective function. Specifically, we take 7', ', k', I

so that:

a; by = max max a;; maxb (maxw-) (maxb )
i 5" Ukl {(i;ﬁj ”)(lc;ﬁl kl); b 13 S kk

We can choose i, j', k', I' so that either i' # j' and k' # ' or ¢/ = j' and k' = ['.
Then for any permutation o such that o(i') = £, and if i’ # j', such that o(j') = ',

we have f(o) > f(7)/n? By fixing more terms, this guarantee can be improved by

a constant factor (at the price of a worse polynomial running time), but we know
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of no algorithm in the literature that improves on this guarantee for all QAP’s with
positive weights.
Arkin, Hassin and Sviridenko [AHS00] consider the problem of maximizing the

QAP where one of the matrices is assumed to satisfy the triangle inequality, and

the other is non-negative (analogous to a metric TSP). They get a %—approximation

guarantee. It is NP-complete to get a constant approximation for the minimization
version of this problem [Que86].

1
n?In(4n*)

approximation guarantee for maximizing (1.2), when the tensor C' = {c;c]l 11 <

Ye [Ye99] gives an algorithm using semi-definite programming that gives a

i,7,k, 1 < n} is positive semi-definite when considered as an n? x n? matrix.

There is another notion of a “good” approximation called the domination number.
The domination number of a permutation o is the number of permutations whose
objective value is at most f(o). For example, if the objective function is maximized
at 7, then 7 has domination number n!. The problem of finding a permutation with
good domination number for the QAP is examined in [GY02]. They show that at
least in the case where n is a prime power, there is a polynomial algorithm that
returns a permutation whose domination number is at least (n — 2)!. Additionally,
they show that such an algorithm exists for TSP for all n. We discuss their algorithm

in Section 4.4.

1.3.2 Empirical Results

The contrast between QAP and TSP in empirical tests is even sharper. A problem
library has been developed for QAP, called QAPLIB [BKR97]|. Most of the problems
in the QAPLIB have a simple structure, say that the distance matrix is obtained from

an arrangement of points in the plane, and some component that is either random or
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drawn from applied data. Despite considerable effort, it has proved difficult to solve
instances of size n = 20, and solutions of problems of size n = 30 are considered
remarkable. See for example [ABGL02] and [BMCP98].

The heuristics that are effective in solving moderately sized TSP’s do not work
as well on QAP’s. One of the goals of this thesis is to provide some explanation of
why this is, and to distinguish the cases where we might expect heuristics to perform
well.

In [AZ01], the authors compare the QAP and the TSP via a “ruggedness coefficient”
which describes a type of local variability. They take the view that problems with
lower local variability are easier for local search. They show that the ruggedness of
the QAP lies between the ruggedness of the TAP (which they consider an easy problem
for local search) and the ruggedness of the binary string problem, which they take

as an example of a very hard problem for local search.
1.3.3 Non-polynomial Algorithms
No counterpart of the dynamic programming algorithm that solves TSP is known

for the QAP, and, in fact, we know of no algorithm that solves the QAP essentially

faster than O(n!), the time required to enumerate the feasible solutions.



CHAPTER II

Summary of Results

In this chapter we state our main results on the distributions of the QAP and the
TSP. The proofs are presented in Chapter III.

The results are divided into four cases, which arise from considering the repre-
sentations of Mat,, under the action of S,, (see Section 3.2). We begin with the most
special case, which we call the “bullseye”, and which already includes the symmetric
TSP. We then consider two different generalizations of the bullseye — the “pure” QAP
and the symmetric QAP. Finally, we consider the general QAP.

For each case, we bound the frequency of relatively large values, and describe
the possible locations of relatively large values with respect to the optimum. The
frequency bounds allow us to analyze how well we can approximate the optimum by
taking the best value from a random set of points. We state algorithmic results of this
type for the “pure” and general cases. The location of large values helps in designing

and understand heuristics for the QAP, and is discussed further in Section 4.2

2.1 Bullseye Special Case

Suppose that the matrix A = (a;;) in (1.1) is symmetric and has constant row

and column sums and a constant diagonal:

18
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a/ij = a’ji for all 1 S Z:J S n;

for some «

Zaij:a forall 7=1,...,n and

n
Zaijza forall i=1,...,n;

ai; = b forsome b andall 2+=1,..., n.

In particular, we noted in Section 1.1, that this case includes the symmetric
traveling salesman problem (TSP).

Similarly, for the generalized problem (1.2) we assume that for any k£ and [ the
matrix A = (a;;), where a;; = cz, is symmetric with constant row and column sums
and a constant diagonal. Retaining the assumption that A is symmetric for all &, 1,

we can weaken the remaining assumptions to the following (n —1)? linear conditions:

(n —2)(cii + i) +ZZC11+CZ1 +chkl+cl]k

J#L I#£1 Jj#i £k
= (n_2 Ckk+cll +ZZ Ckl"'cl?k +ZZCU+CJZ (2]‘)
J#1 l#£k VEAREA!

forall2 <,k <n
It turns out that the optimum has a characteristic “bullseye” feature in the Ham-

ming metric on S, (see Definition 1.1.5). This is illustrated in Figure 2.1.

Theorem 2.1.1 (Bullseye Distribution). Let

k* =3k +v(n — k)
n? —3n

b

a(n, k) =

where k = 0,1,... ,n— 2,n and v is the function of Definition 1.1.8. Then we have

Z fo(o) = a(n, k) fo(7)

UEU(T k)

fork=0,1,...,n—2,n.
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We observe that as the ring U(, k) contracts to the optimal permutation 7 (hence

k increases), the average value of f on the ring steadily improves (as long as k > 3).

Distribution of values of the objective function with respect to the Hamming distance

from the maximum point

Maximum value Large average Medium average Small average

Figure 2.1: Bullseye Distribution

It is easy to construct examples where some values of f in a very small neighbor-
hood of the optimum are particularly bad, but as follows from Theorem 2.1.1, such
values are relatively rare.

Estimating the size of the ring U(r, k), we get the following result.

Theorem 2.1.2 (Frequency of Large Values for Bullseye QAP).  Let us choose

an integer 3 < k <n — 3 and a number 0 < v < 1 and let

k* — 3k

n2—3n

B(n, k) =

The probability that a random permutation o € S, satisfies the inequality

fo(o) > vB(n, k) fo(r)



21

is at least

(=76, k)
skl

2.2 Pure Special Case

In this section, we consider a more general case of a not necessarily symmetric
matrix A = (a;;) in (1.1) having constant row and column sums and a constant

diagonal:

for some «

Zaij:a forall 7=1,...,n and

Zai]’:a forall ¢+=1,...,n;

ai; = b forsome b andall ¢=1,... n.

We noted in Section 1.1 that this case includes the Asymmetric Traveling Salesman
Problem (ATSP).

Similarly, for generalized problems (1.2) we assume that for any k£ and [ the matrix
A = (aj), where a;; = cfi has constant row and column sums and has a constant
diagonal. These conditions can be relaxed to the following (n — 1)? linear conditions

on C:

n(n—2)(cii+cy) +>. ) ((n=1)(cr] +cl}) +f +¢y)

J#1 1#£1
+ZZ ((n - 1)(ci, + cly) + i + c;:l)
J#i lF#k
= n(n — 2)(cg + ct) +ZZ ((n—1)( )(ew + cle) + ol +cy ) (2.2)
J#1 £k
+3 3 ((n =D+ ) +él + )
i 1£1

forall2 <,k <n
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We call this case pure because the objective function f lacks the linear component
(see Definition 1.1.4). In the terminology of the Koopmans-Beckmann problem (see
Section 1.3), the total flow of goods (both in and out) is constant across facilities,
and the cost of building the facilities does not depend on the location.

The behavior of averages of f, over the rings U(7, k) is described by the following

result.
Theorem 2.2.1 (Pure Distribution).
Let us define three functions of n and k:

ar(n, k) =1—v(n—k)
k*—3k—n—-3v(n—k)+v(n—kn+4

e(n, k) = T dn 4 and
kK —3k—n—2vin—k +vin—kn+3
ao(n, k) = nQ(— 4n3—3 ( ) ’

where k = 0,1,... ,n — 2,n and v is the function of Definition 1.1.8.
If n is even, then for some non-negative y; and -5 such that v, + o = 1 we have
Lo Y o) = (man(n, k) +ya0.(n. ) fo(7)
—_— o) = |mai(n Qo (M, T
U(r, k)| 0 T1oa(n, Yoo 0
oeU(T,k)
fork=0,1,...,n—2,n.
If n is odd, then for some non-negative v, and 7, such that v, + v, = 1 we have
1
> fo(0) = (e (n, k) + 1z, k) fo()
|U(T’ k)| o€eU(1,k)

fork=0,1,... ,n—2,n.

We show in Section 3.9 that, at least for even n, for any choice of v;, v, > 0 such
that 71 + 72 = 1 there is a function f of type (1.1) for which the averages of fy over

U(r, k) are given by the formulas of Theorem 2.2.1.
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2.2.1 Damped Oscillator

We observe that there are two extreme cases. If vy = 0 and 7 = 1 then f
exhibits a bullseye type distribution as in Section 2.1. If 74 = 1 and 7, = 0 then
f exhibits a “damped oscillator” type of distribution: the average value of f; over
U(r, k) changes its sign with the parity of k£ and approaches 0 fast as k shrinks. In
short, if f has a damped oscillator distribution, there is no particular advantage in

choosing a permutation in the vicinity of the optimal permutation 7, see Figure 2.2.

Distribution of values of the objective function with respect

to the Hamming distance from the maximum point

. ]

Maximum Large average Medium average Small average
value

Figure 2.2: Damped Oscillator Distribution

For a typical function f one can expect both +; and 7, positive, so f would
show a “weak” bullseye distribution: the average value of fy over U(r, k) improves
moderately as k£ gets smaller, but not as dramatically as in the bullseye case of
Section 2.1. Still, it turns out that we can find sufficiently many reasonably good

permutations in the vicinity of the optimal permutation (see Remark 3.6.3).
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Theorem 2.2.2 (Frequency of Large Values for Pure QAP).

Let us choose an integer 3 < k < n — 3 and a number 0 < v < 1 and let

k2 —3k+1

k)= ————.
Bn. k) n2—3n+1

The probability that a random permutation o € S,, satisfies the inequality

fo(a) > vB(n, k) fo(r)

is at least

1 =7)Bn. k)
08

In particular, by choosing an appropriate k, we obtain the following corollary.

Corollary 2.2.3.

i. Let us fix any o > 1. Then there exists a 6 = 6(a) > 0 such that for all
sufficiently large n > N(«) the probability that a random permutation o in S,
satisfies the inequality

folo) 2 =5 fo(r)

2

is at least én—°. In particular, one can choose § = exp{—c\/a In oz} for some

absolute constant ¢ > 0.

ii. Let us fix any € > 0. Then there exists a § = d(¢) < 1 such that for all
sufficiently large n > N(«) the probability that a random permutation o in S,

satisfies the inequality
fo(o) > n™fo(7)

is at least exp{—n’}. In particular, one can choose any § > 1 — ¢/2.
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It follows from Corollary 2.2.3 that to get a permutation o which satisfies (i) for
any fixed «, we can use the following straightforward randomized algorithm: sample
O(n?) random permutations o € S,, compute the value of f and choose the best
permutation. With the probability which tends to 1 as n — +00, we will hit the
right permutation. The complexity of the algorithm is quadratic in n for any «, but
the coefficient of n? grows as o grows. If we are willing to settle for an algorithm of a
mildly exponential complexity of the type exp{n”} for some 3 < 1 we can achieve a
better approximation (ii) by searching through the set of randomly selected exp{n”}
permutations. We remarked in Chapter I that no algorithm solving the Quadratic
Assignment Problem (even in the special case considered in this section) with an
exponential in n complexity exp{O(n)} is known, although such an algorithm does
exist for the Traveling Salesman Problem.

We prove these results in Section 3.6.

2.3 General Symmetric Case

In this section, we assume that the matrix A = (a;;) in (1.1) is symmetric, that
is:
a;j = a; forall 1<4,j<n.
In fact, it is sufficient for A to be the sum of a symmetric matrix, a matrix with
constant rows, and a matrix with constant columns.
Similarly, in the generalized problem (1.2) we assume that for any k # [, the
matrix A = (a;;), where a;; = cz, is the sum of a symmetric matrix, a matrix with

constant rows, and a matrix with constant columns. We can weaken this assumption
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1
slightly to having C' satisfy the following §(n4 — 4n® 4+ 5n® — 2n) linear conditions:

n n n n
i . e <1 ] -1
ij i i'j 7 ij 7
”012_7“’{2_2:012‘*‘2:0{2_2 012"‘2:6{2

i'=1 =1 §'=1 j=1

=ncjy—ncly =Y G+ Y dy =yl + Y df (2:3)
=1 =1 j'=1 j'=1
foralll<i<j<nandk#I

Overall, the distribution of values of f turns out to be much more complicated

than in the special cases described in Sections 2.1 and 2.2.

Theorem 2.3.1 (Symmetric Distribution).

Let us define three functions of n and k:
2nk —2n —k* =3k —v(n—k)+6

cr(m, k) = n? —5n+6
2
_ k) —4
e, ) = nk+n+k2+k—ll—u(n k) and
n_
—n?k+nk* +n*+nk+nv(n—k) —4n — 3k + 3
Azo(n, k) = on? — Tn + 3 ’

where k = 0,1,... ,n— 2,n and v is the function of Definition 1.1.8.

If n is even, then for some non-negative v; and 7, such that v; + vy = 1 we have

m Z fO(O') = (71041(”’ k) +’72a'26(n’ k))fO(T)

oeU(1,k)

fork=0,1,... ,n—2,n.

If n is odd, then for some non-negative ~y; and v, such that y; + v, = 1 we have

> (o) = (mras(n, k) + a00(n, ) fo(7)

oeU(T,k)
fork=0,1,...,n—2,n.

1
U(r, k)l

It follows from our proof (see Section 3.7) that for any choice of y1,v2 > 0 such
that ;1 + 2 = 1 there is a function f of type (1.2) for which that averages of f, over
U(r, k) are given by the formulas of Theorem 4.1. Moreover, at least if n is even,

one can choose f to be a function of type (1.1), see Section 3.9.
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2.3.1 The “Spike” Distribution

As in Section 2.2, we see that there are two extreme cases. If vy =1 and v, =0
then f has a bullseye type distribution as in Section 2.1. If 74 = 0 and 5 = 1 then

f has what we call a “spike” distribution, see Figure 2.3. In this case, for 3 < k£ <

Distribution of values of the objective function with respect to the Hamming distance

from the maximum point

Maximum value Small average Large average

Figure 2.3: Spike Distribution

n — 3 the average value of fy over U(7, k) is negative. Thus an average permutation
o € U(r,n — 3) presents us with a worse choice than the average permutation in
Syn. However, the average value of fy over U(r,0) is about one half of the maximum
value fo(7). Thus there are plenty of reasonably good permutations very far from 7
and we can easily get such a permutation by random sampling.

We obtain the following estimate for the number of near-optimal permutations.

Theorem 2.3.2 (Frequency of Large Values for Symmetric QAP).  Let us choose

an integer 3 < k <n — 3 and a number 0 < v < 1 and let

3k—5
n2—kn+k+2n—-5

Bn, k) =
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The probability that a random permutation o € S,, satisfies the inequality

fo(o) = vB(n, k) fo(r)

is at least

(1 =7)B(n, k)
Bk

One can notice that the obtained bound is essentially weaker than the bounds of
Theorems 2.1.2 and 2.2.2. We give an example below showing that at least for the
generalized problem (1.2), the bounds of Sections 2.1 and 2.2 and Corollary 2.2.3, in
particular, cannot hold true. The question whether the estimates can be improved

for the problem (1.1) remains open.

2.3.2 Scarcity of Large Values for Symmetric QAP

Let us fix any 0 < < 1 and any 0 < e < 1 — 4. Let us choose an integer m such
that n'~¢ > m > n’. In Remark 3.2.5, we show that there exists a tensor ¢} such
that ¢ = ¢} for all k and [ and such that for the function f defined by (1.2) we

have
p*(o) — mp(o) + p(o) + 2t(c) + m =5
n>—nm+2n+m-—>5

flo) =

b

where p(o) is the number of fixed points in ¢ and ¢(o) is the number of 2-cycles in o,
see Definition 1.1.9. We show that f = 0 and that f(¢) = 1 is the maximum value
of f, where ¢ is the identity permutation.

Then, for all sufficiently large n, the value f(o) > 2/n can be achieved only on
permutations o with p(o) > m. The number of such permutations o does not exceed
(?)(n—m)! = n!/ml. That is, the probability that a random permutation o satisfies
f(o) > 2/n does not exceed exp{—n’} for large n. So, at least for the generalized
problem (1.2), the estimate of Corollary 2.2.3 part (ii) does not carry over from the

pure special case to the symmetric special case for € < 1.
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2.4 General Case

It appears that the difference between the general case of problems (1.1) and (1.2)
and the symmetric case of Section 2.3 is not as substantial as the difference between
the symmetric case and the special cases of Sections 2.1 and 2.2.

First, we describe the behavior of averages of fy over the rings U(r, k).

Theorem 2.4.1 (General Distribution).

Let us define five functions of n and k:
—k(n—Fk)+n—2
n—2

az(n, k) =1—v(n—k),
2nk —3k—2n—k*—v(n—k) +6

ap(n, k) =

Y

as(n, k) = n? —5n+ 6 ’

k —k)—2
ayg(n, k) = +ng_2) and

—2nk + 3k* =3k +v(n —k)n+n—3
@so(n, k) = n2—2n(—3 ! ’

where k =0,1,... ,n — 2,n and v(k) is the function of Definition 1.1.8.
If n is even, then for some non-negative 7yi,7,7vs and 7y, such that v, + v +

v3 + Y4 = 1 we have

1
m Z fo(o)

oeU(r k)
= (71041 (n, k) + y200(n, k) + ysa3(n, k) + vaca(n, k))fo(T)
fork=0,1,... ,n—2,n.
If n is odd, then for some non-negative vi,7s,7s, Vs and 75 such that v, + v, +

v3 + Y4 + 75 = 1 we have
1

\U(7, k)| 2

oc€eU(r,k

= (’)’1041(7% k) + yvaca(n, k) + v3az(n, k) + yaau(n, k) + y5050(n, k)) fo(T)

fo(o)
)

fork=0,1,...,n—2,n.
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It follows from our proof (see Section 3.8) that for any choice of v,...,74 >0
(n even) or 7,...,7 > 0 (n odd) summing up to 1 there is a function f of type
(1.2) for which the averages of fy over U(7, k) are given by the formulas of Theorem
2.4.1. Moreover, at least for combinations of 7,...,74 > 0, one can choose f to be
a function of type (1.1), see Section 3.9.

As we let all but one 7 equal to 0, we obtain various extreme distributions: the
bullseye (when 3 = 1 or 74 = 1, cf. Section 2.1), damped oscillator (when v = 1,
cf. Section 2.2) and spike (when v; = 1 or 75, = 1, cf. Section 2.3) types. We do
not get any new type of a distribution, but we can find a sharper spike than in the

symmetric case.

2.4.1 The Sharp Spike Distribution

Let us consider the function

—p(n—p) +n—2
n—2

f=

where p(o) is the number of fixed points of o, see Section 1.1. It follows from
Remark 3.2.5 that f is a function of type (1.2) and that f = 0. The maximum
value of 1 is attained at the identity and at the permutations without fixed points.
All other values of f are negative. The sharp spike is illustrated in Figure 2.4. In
Section 3.9 we construct a function of type (1.1) whose average values over the rings
U(e, k), where € is the identity permutation, coincide with those for f.

Our bound for the number of nearly optimal permutations is only slightly weaker

than the bound of Theorem 2.3.2 in the symmetric case.

Theorem 2.4.2 (Frequency of Large Values for General QAP).

Let us choose an integer 3 < k < n — 3 and a number 0 < v < 1 and let

k—2
n2—nk+k—2

B(n, k) =
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Distribution of values of the objective function

with respect to the Hamming distance

from the maximum point

Maximum value Below average value

Figure 2.4: Sharp Spike

The probability that a random permutation o € S,, satisfies

fo(o) > vB(k,n) fo(T)

is at least

(1 =7)B(k,n)
bRl

By choosing an appropriate k, we obtain the following corollary.

Corollary 2.4.3.

i. Let us fix any o > 1. Then there exists a 6 = 6(a) > 0 such that for all
sufficiently large n > N(«) the probability that a random permutation o in S,

satisfies the inequality
e
fo(@) > 5 folr)
is at least 6n~2. In particular, one can choose § = exp{—ca In a} for some

absolute constant ¢ > 0.
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ii. Let us fix any € > 0. Then there exists a § = d(¢) < 1 such that for all
sufficiently large n > N(€) the probability that a random permutation o in S,

satisfies the inequality
fo(o) >n~'=fo(r)

is at least exp{—n’}. In particular, one can choose any § > 1 —e.

As in Section 2.2, we conclude that for any fixed & > 1 there is a randomized
algorithm of O(n?) complexity which produces a permutation o satisfying (i). If
we are willing to settle for an algorithm of mildly exponential complexity, we can
achieve the bound of type (ii), which is weaker than the corresponding bound of
Corollary 2.2.3.

For the generalized problem (1.2), we can show that the estimates of Corol-
lary 2.4.3 are tight by constructing a tensor (cf. Remark 3.2.5 and Section 2.3.2)
that is constant on the rings U(r, k) and attains the averages of Theorem 2.4.1. For
functions of type (1.1), we can show that the frequency bound of dn~2 in Part (i) for
the fraction of permutations meeting the guarantee is essentially tight (even in the
bullseye case of Section 2.1) by using the functions of Remark 3.9.1. An interesting
question is whether the guarantee of a/n? in Part (i) is also tight for functions of
type (1.1).

We prove our results in Chapter III.



CHAPTER III

Methods and Proofs

In this chapter, we prove the results of Chapter II. The facts we use from repre-

sentation theory are described in Section 3.2.

3.1 The Central Projection

In this section, we prove some technical lemmas for later use.
First, we show that it is indeed easy to compute the average value f of a function
f defined by (1.1) or (1.2). The result is not new (see [GW70]), we state it here for

the sake of completeness.

Lemma 3.1.1. Let f : S, — R be a function defined by (1.1) for some n X n

matrices A = (a;j) and B = (b;;). Let us define

n
) = E A5, Qg = E Q4 and
=1

1<i#j<n
Bi= > by =) b
1<i#j<n i=1
Then
- a1/ o0
f= n(n—1) + n

Similarly, if f is defined by (1.2) for some tensor C = {c;gl}, 1<4,j,k,1 <n then

femp ¥ 2 G Y d (3.1

1<i#£j<n 1<k#I<n 1<i,i<n

33
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Proof. We prove the first part only, as the proof of the the second part is completely
similar. Let us choose a pair of indices 1 < ¢ # 7 < n. Then, as ¢ ranges over the
symmetric group S, the ordered pair (a(z’), o(y )) ranges over all ordered pairs (&, ()
with 1 < k # [ < n and each such a pair (k,[) appears (n — 2)! times. Similarly,
for each index 1 < ¢ < n, the index o(i) ranges over the set {1,...,n} and each

j €{1,...,n} appears (n — 1)! times. Therefore,

o d - 1
f = " Z Z bo(i)o () Mij = Z (az’jm Z brf(l')ff(i))

0ESy ij=1 ij=1 o€Sy,
. 1 - 1« B Qo
B n(n—l)zawﬂl—i_nza“@_ n(n —1) * n
i£] i=1
and the proof follows. O

Remark 3.1.2. Suppose that f(o) = (B,0(A)) for some matrices A and B and all
o € S, is the objective function in the QAP (1.1) and suppose that the maximum value
of f is attained at a permutation 7. Let A” = 7(A) and let f7(0) = (B,0(A4")).
Then f7(0) = f(o7), hence the maximum value of f7 is attained at the identity
permutation € and the distribution of values of f and f7 is the same. We observe that
if A is symmetric then A7 is also symmetric, and if A has constant row and column
sums and a constant diagonal then so does A”. Hence, as far as the distribution of
values of f is concerned, without loss of generality we may assume that the maximum
of f is attained at the identity permutation £. The same is true for functions in the

generalized problem (1.2).
Next, we introduce our main tool.
Definition 3.1.3. Let f : S, — R be a function. Let us define function g : S,, —
R by
o) = = 3 o ow).

T weSy,
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We call g the central projection of f.

It turns out that the central projection captures some important information

regarding the distribution of values of a function.

Lemma 3.1.4. Let f: S, — R be a function and let g be the central projection

of f. Then

i. The averages of f and g over the k-th ring U (e, k) around the identity permu-

tation coincide:

Z flo (’k)| > glo);

O'EU(E k) O'EU(E,k)

ii. The average values of f and g on the symmetric group coincide: f =g;
iii. Suppose that f(e) > f(o) for all 0 € S,,. Then g(¢) > g(o) for all 0 € S,,.

Proof. We observe that o € U(e, k) if and only if o has exactly n — & fixed points.
Hence for any fixed w € S,,, the permutation w™'ow ranges over U(e, k) as o ranges

over U(e, k). Hence

1 1 .
Ten 2 Y= Ten 2 (mzf“’ "“’)

o€U(g,k) oeU(g,k) wESn
1 _
~u e, X, 1) = e, 2 10
JEU(sk aEU'sk

and (i) is proven. Part (ii) follows from (i). To prove (iii), we note that w™'ew = ¢

for all w € S,, and hence g(¢) = f(¢). Moreover, for any o € S,

= Y e tow) < o 3 (o) =

wESH wESy
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3.2 Facts from Representation Theory

We aim to understand the QAP by studying the action of S,, by conjugation on the
matrix A = (a;;). This action is well studied in representation theory of finite groups
(see, for example, [FHI1] or [JK81]). The crucial observation for our approach is that
the central projections g of functions f defined by (1.1) or (1.2) must have a relatively
simple structure. In particular, g must lie in a 4-, 3-, or 2- dimensional vector space,
depending on whether we consider the general case, the cases of Sections 2.2 and 2.3
or the special case of Section 2.1. If we require, additionally, that f = 0 then the
dimensions drop by 1 to 3, 2 and 1, respectively. In this section, we introduce some

facts about the symmetric group and its representation theory.

3.2.1 The Conjugacy Classes of S,

Let us fix a permutation p € S,. As w ranges over the symmetric group S,,
the permutation w™'pw ranges over the conjugacy class X (p) of p, that is the set of

permutations that have the same cycle structure as p. In particular we have:

Remark 3.2.1. If f: S, — R is a function and ¢ : S,, — R its central projection,

then

1
g(p) - ‘X(p)| aer%p)f(o-)‘

If X C S, is a set which splits into a union of conjugacy classes X(p;) : ¢ € I, and

for each such a class we have

for some number «, then
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Definition 3.2.2. A (linear) representation of a group G is a group homomorphism
p: G — GL(V) where GL(V) is the group of invertible linear transformations of
a suitable vector space V. The degree of the representation is the dimension of V.
Equivalently, the representation can be viewed as the G-module given by the action

of GonV.

In the QAP, we are interested in the action of S,, on the set of n x n matrices Mat,,
by permuting rows and columns. This is a representation of degree n?, since it is a
linear action on V = R", rearranging the n? matrix elements.

The building blocks of representation theory are irreducible representations, that
is representations which contain no non-trivial invariant submodules (subspaces). A
basic fact about the representation theory of finite groups, is that the representation
of any finite group (over a field of characteristic 0) decomposes as a finite direct
sum of irreducible representations. This decomposition is not, in general, unique,
and there may be multiple irreducible modules corresponding to a given irreducible
representation. The irreducible modules corresponding to an irreducible represen-
tation are however, isomorphic, and their multiplicity in any decomposition is the
same. Further, the submodule that is the sum of all the (isomorphic) submodules
associated to a given irreducible representation is unique. This is called the isotypical
component of the representation. We refer to [FH91]| for further details.

We aim to understand the conjugation representation by decomposing it into its
isotypical components. In particular, this decomposition will allow us to determine
the central projection.

We describe the invariant subspaces of the action of S, in the space of n x n
matrices Mat,, by simultaneous permutations of rows and columns. For n > 4,

there are seven such invariant subspaces, and we have grouped isomorphic subspaces
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together to give the four isotypical components of the representation. Our notation
is inspired by the generally accepted notation of representation theory of S,, where
irreducible representations and their associated subspaces are indexed by partitions

of the integer n.

Subspace L,

Let L. be the space of constant matrices A:
a;; =a forsome a andall 1<i4,j<n.
Let L2 be the subspace of scalar matrices A:

a if i=7
aij = for some «.
0 if i#j
Finally, Let L, = L. + L?. One can observe that dim L, = 2 and that L, is the

subspace of all matrices that remain fixed under the action of S,,.
Subspace L;,_1 1

Let L;_, ; be the subspace of matrices with identical rows and such that the sum

of entries in each row is 0:

(O!l Qo ... Ojn\

(675} Gy ... Oy
, where a;+...4+a,=0.

\Ojl Qo ... Ojn)
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Similarly, let L? | be the subspace of matrices with identical columns and such

that the sum of entries in each column is 0:

(Ofl (€ I O{l\

Qg Qg ... Q9
A= , Wwhere oa;+...4+a,=0.

Qnp O ... O )
Finally, let L?L_Ll be the subspace of diagonal matrices whose diagonal entries sum

to zero:

(041 0o ... 0 0\

0 a ... 0 0
A= , where a;+...4+a,=0.

\0 0 ... 0 o)

Let L1y = L, + L2, + L3 ;,. One can check that the dimension of each
of L, _,,, L7, and L} |, is n — 1 and that dim L,_;; = 3n — 3. Moreover, the
subspaces L, ;, L2, and L} || do not contain non-trivial invariant subspaces.

The action of S,, in L,,_; 1, although non-trivial, is not very complicated.
Subspace L;,_32

Let us define L, 5, as the subspace of all symmetric matrices A with row and

column sums equal to 0 and zero diagonal:
a;; =a;; forall 1<4,j<mn;
n
Za,-jzo forall j=1,...,n;

=1
ZG/Z’]’:O forall +=1,...,n and
j=1

a; =0 forall ¢=1,...,n.
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One can check that L, 59 is an invariant subspace, that dim L, 5, = (n2 —3n)/2,

and that L,_,5 contains no non-trivial invariant subspaces.
Subspace L, 21,1

Let us define L, _5;1 as the subset of all skew symmetric matrices A with row

and column sums equal to 0:

a’ij = _a/ji fOI‘ all 1 S Z,] S n;
n

Zaijzo forall 7=1,...,n and

z;l
Zaij:() forall ¢=1,... n.
j=1

One can check that L,_5 ;1 is an invariant subspace and that dim L,,_5;,, = (n? —

3n)/2 + 1. Similarly, L,_5;; contains no non-trivial invariant subspaces.

By checking dimension and independence, we see that Mat, = L, + L,_11 +
Ly_99+ Ly_211. The decomposition of Mat, under conjugation into irreducible
components is described in Section 2.9 of [JK81]. They use the fact that the conju-
gation action on matrices can be viewed as the tensor product of two copies of the
natural permutation action on R".

In the generalized problem (1.2), we look at the action of S,, on the 4-dimensional
array C' = (c) given by o(c}) := ¢}, "®770) This decomposes as a tensor product
Mat,, ® Mat,,, where the action on the first component is the conjugation action on
Mat,, described above, and the action on the second component is trivial. Then the
isotypical components of this action are simply given by L, ® Mat,,, L,_11 ® Mat,,
L,_25®Mat, and L,_51,; ® Mat,.

We now introduce a key object in representation theory.

Definition 3.2.3. The character of a representation p is the function y : G — C
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given by x(o) = trace(p(o)).

The character is well-defined, since trace is invariant under change of basis.

Of particular interest are the characters of the irreducible representations asso-
ciated to the isotypical subspaces described above. It turns out that we can give
formulas for these irreducible characters in terms of the functions p(o) (number of
fixed points) and ¢(o) (number of transpositions) on permutations (Definition 1.1.9).
The characters are:

Xn(0) =1 forall o€ Sy;

Xn-1,1(0) =p(o) =1 forall o€ Sy;

1 3
Xn—2,2(0) =1t(0) + §p2(0) - 510(0) for all o € Sp;
1 3
Xn—21,1(0) = §p2(0) — ip(a) —t(o)+1 forall o€ S,.

These character functions are computed explicitly in [Mur38] Chapter 5, Section 2.
They can also be computed from the Murnaghan-Nakayama rule of representation
theory (see for example Section 4.3 of [FH91]). This rule gives the character value at
a permutation o as the number of ways of filling a partition diagram with integers
prescribed by the cycle structure of o. This is one of the advantages of indexing the
irreducible representations by partitions of n. In the case of the conjugation action,
only the above four relatively simple characters occur.

It is often useful to view the characters as elements in the vector space of class
functions, that is functions which are constant on equivalence classes of permutations.

There is an important inner product on this space:

1
(0) =1 > x(0)6(0)

ceG

If the characters are allowed to be complex valued, the x(o) factors in the above sum

would be conjugated, but that is not relevant here. It turns out the the irreducible
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characters form an orthonormal basis for the space of class functions. We refer again
to [FHI1] for further details.
In particular, we will use that

Z Xn—1,1(0) = Z Xn—2,2(0) = Z Xn—2,1,1(0) =0,

O'ESn O'ESn UESn

hence the average value of all but the trivial character y,, is 0.
To state the main result of this section, we recall the definitions of the central

projection (see Definition 3.1.3).

Proposition 3.2.4.  For n x n matrices A and B, wheren > 4, let f : S, — R

be the function defined by (1.1) and let g : S,, — R be the central projection of f.
i. If A € L, then g is a scalar multiple of the constant function x,(o).
ii. If A€ L, 1, then g is a scalar multiple of the function x,_1,1(0).
iii. If A € L,_o5 then g is a scalar multiple of the function X,_22(0).
iv. If A€ L,_51, then g is a scalar multiple of the function x,_21,1(0).

Analogously, for the generalized function (1.2), if the tensor C = (c}) lies in a given

isotypical component of R*, then g is a scalar multiple of the corresponding character.

Proposition 3.2.4 follows from the representation theory of the symmetric group
(see, for example, Part 1 of [FH91]). The set of all functions f : S, — R is
identified with the (real) group algebra of the symmetric group. The center of the
group algebra is spanned by the characters of the irreducible representations of .S,,.
The basic fact that we are using here is that if f is a matrix element in an irreducible
representation of the group then the central projection (Definition 3.1.3) must be a

scalar multiple of the character of that representation.
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Remark 3.2.5. We note that the functions p, p? and ¢ are objective functions of type
(1.2) in some generalized QAP. Indeed, to obtain p we choose ¢ = 1foralli =1,... ,n
to be the only non-zero entries of C. To obtain p?, we choose c;; =1forl1<i,j<nto
be the only non-zero entries of C. To obtain ¢, we choose cyz =l1foralll<i<j<n

to be the only non-zero entries of C'. Consequently, the characters x,, Xn-1,1, Xn—22

and xn_2,1,1 are objective functions of type (1.2).

3.2.2 Computing the Central Projection

Given a function f of type (1.1) or (1.2), we can compute the central projection
g around the identity € explicitly. From the linearity and orthonormality of the

characters and Proposition 3.2.4, g can be written:

9= "YaXn T VYn-1,1Xn-1,1 T+ Yn—22Xn-22 + Yn-21,1Xn-2,1,1

for some real coefficients vy, ¥n—1,1, Yn—2,2 and y,_2,1,1. In particular, we are interested
in cases where the some of the coefficients are zero, since conditions of this type
distinguish the special cases of Sections 2.1, 2.2 and 2.3.

We will work with the generalized function f of type (1.2), for some tensor C' =
(c;c]l) To compute a particular v, where p is a partition of n (in this case necessarily
one of {n},{n —1,1},{n — 2,2} or {n —2,1,1}), we project the tensor C into the
isotypical component associated with p, and then compute the central projection of
the part of f attributable to this component. For our problem, we will denote by
P,(C) the projection of C into L, ® Mat,, and define the function f, on to P,(C)
by:

fp(a) = Z (Pp(c))ij(i)a(j)
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We denote by g, the central projection of f,:

(o) = = 3 fylwlow).

wESnh

By Proposition 3.2.4 and linearity, g, is the component of g parallel to the (ortho-

normal) basis element x,, and so g, = Y,x,.- Then we compute:

9p(€)
T = (3.2)
" (o)
where ¢ is the identity permutation.

Consider the case of the coefficient +, of the trivial character x,. The projection

P,(C) of C onto the isotypical component L, ® Mat,, is given by:

)
]_ NN
el Dt if § = j
ij 1<i'<n
Pa(O)y = _1Z -
i'5' e . .
nn—1) Z ¢ ifiF#]
\ 1< #4'<n

Noting that x,(€) = 1, the coefficient =, is given by:

_ gale) _ 1 i 1 A
%_Xn(s)_n(n—l) Z Z kl+n Z kk

1<i#£j<n 1<k#£I<n 1<i,k<n

This is exactly the average value (f) of f calculated in Lemma 3.1.1. So the coefficient
of x, in g is zero exactly when the average value of f is zero. If we use the modified
function f; in place of f, then the coefficient of y, in g will always be zero.

We can obtain formulas for the projections into the remaining isotypical compo-
nents; we find these for P,_; ;(C) and P,_21,:(C) in Sections 3.2.3 and 3.2.4.

Once we have the projections P,(C'), it is easy to test whether the coefficient v,
is zero in the central projection of f. However, the theorems of Chapter II concern
the distribution of values around the maximum, which may not be located at the

identity, but instead at a permutation 7 that we do not know in advance. Given T,
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we could replace f by the shifted function f” from Remark 3.1.2, whose maximum
lies at the identity. This shift is accomplished by using 7(C) in place of C. We then
compute the projection P,(7(C)) and test if the coefficient 7] of x, in the central
projection of f7 is zero.

Since there may be no efficient way of finding 7, we will have to settle for finding
conditions such that 7y = 0 for all 7 € S,. We use this to derive the relaxed
conditions for Theorems 2.1.1, 2.2.1 and 2.3.1.

We begin by noting that the function f] from P,(7(C)) is given by:

fplo) == Z(PP(T(C)))?(i)J(j) = Z(Pp(c))?r(i)w(j)) = fp(oT)

From (3.2), we see that the coefficient 7, is zero when the central projection g; of

[, is zero at the identity £. Observe that:

95(€) = [ (€) = fo(7)
So we will look for conditions so that f,(r) =0 for all T € S,,.

In the case of the trivial character, x,, this is an easy exercise. The function
fn given by the tensor P,(C) is constant on all permutations with value f. So the
condition we arrive at is f = 0. For the remaining characters, things are not quite as
simple. In the next two sections, we find conditions so that the functions f,_;; and

fn—2.1,1 are zero. These two conditions determine the special cases of Sections 2.2

and 2.3.

3.2.3 Conditions Determining the Pure Special Case

Consider now the character x,—11. We begin by calculating P,_; 1(C), the pro-
jection of C' into L,_; 1 ® Mat,,.
To do this, we break L,_;; into its constituent subspaces, L,_,,, L2_,, and

L3 ;. Any W = (wj;) € Ln_1, is the sum of a matrix X with identical rows whose
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entries sum to zero, a matrix Y with identical columns whose entries sum to zero,
and a diagonal matrix Z with the diagonal summing to zero. If the diagonals of X,

Y and Z are given by vectors z = (z;), y = (y;) and z = (;) respectively, then we

can write:
(331+yl+21 To + 11 Tn + Y1
W= 1+ Yo To+Ys+20 ... Tp + Y2 |
\ xl"‘yn x2+yn $n+yn+zn)

That is: wij =
T+ Yi ifi#j

To decompose W into X, Y and Z, we solve for z;, y; and z; in terms of the w;;.

Using the facts that Zx, =0= Zyi, we find that:

i=1 =1
n n

Then we get:
1 ( n n
T; = —F——=— (n—l)szj+Zw]Z—nw,Z>
n(n —2) = o
1 n n
Y; = ﬁ ((n - 1) Zwﬁ + Z’U)Z‘j — nwii)
n(n = =
1 n n
Zp = m (nwii - iji - Zwig)
j=1 j=1

We use these formulas to express the projection P,_;1(A) of a matrix A into L,

as the sum of row, column and diagonal matrices whose entries sum to zero. Define
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the following operators on Mat,,:

Ql(A)ij = ﬁ ((n - 1) Zaijf + Z aj:i - Z ai:jf — Nag; + ZCLﬂy)

=1
1 n
QZ(A)Z] = m ( n— 1 'Zlazj‘i‘lzla/]zl — IZ azj najj+ilzlai/i/>
2 (3 =
1 2 e
n—9 na;; — Z Ay — Z Qg5 — Z Q14 + E Z Qg 5 if 1= i
Q3(A)Z] i'=1 j’:l j’:l i’,j’:l
0 if i j

Then P, 1; = Q' + Q% + Q? since this operator is linear, idempotent and has range
L, _1,. Similarly, we can describe the projection from Mat, ® Mat,, to L, 11 ® Mat,,

as the sum of three operators Q*(C), Q*(C) and @Q*(C). We use the shorthand

n n

L _ o L

Ci = g c,; for the sum of all entries of (c}}) given fixed k,l and C{] = Y ch
’i’,j’:l z‘l

for the sum of the diagonal entries of (c) given fixed k, I:

ij 1
Q' (O)y ::m(”_l Zc +Z W~ ey — Ckl+0kl>

J'=1 J'=1
| 1 "o, L
Q* () 1=m( ZC +) iy —ndi - Ch+C )
=1 =1
1 y L L 2
= (nc%sl—Zc::l —Z%ﬁ—(fﬁm%) if i=j
QO A
0 if i#£7

Since f_1,1 is linear, we can break it up as a sum of functions on the three pieces
of Pn—l,l (C)

1 2 3
Jo—11 = focin + facin oo
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where we have:

In 1,1(0) =
- 1 i i
> nln —2) ( n—1) Z oty Z 7o) ~ "Cowoti) — Cotiyati) + Cf(z‘)a(j))
2,j=1 j'=1
- 1 )
= n(T(“—l Z%(z Z 70 —”ZC i ~ Z Z )
=1 3,3'=1 3.4’ =1
fzq,l(a) =
- 1 ; p .
Zl nln —2) ( Z ooty + Z A = Cotiots) + Cotiroty )
2,j= i'=1 i'=1
n 1 » n '
:Zm(”_l ZC +Zcfa(j>_”2;03J Z Z )
j=1 ii'=1 ii'=1 i=
2—1 1(0) ==
(n _ 2) ( Z Ca(z Yo (2) Z CZr(i)a(i) - CUD(Z')U(Z') + ch(z)o(z)>
i=1 j'=1

Note that in the expressions for fi ,, and f2_,, we are able to re-index j and i

respectively since the sum is over the entire set {1,...,n}. Similarly, we note that

cA. o and ch. . do not depend on o.
o(i)o(5) o(i)o(5)
ij=1 ij=1

Now consider the matrix D = (d;;) given by:

1
dik ::m( (n—1) Zc +Zc,7;l anZlnL (n—1) Zc{,ﬁ
Jil=1 Jil=1 gl=1
n
B S B S BECT PR o )
=1 =1 =1 =1
:m( (n? Ckk+ZZ(n_1 Ckz"“/’z]/z)‘*‘cﬂ"‘clyfz))
Jj#i £k

Then D defines a linear assignment problem (see Definition 1.1.4) given by the func-
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tion:

h(o) = Z dio (i) (3.3)

— 1 — 1 - D A - A D
4 =5 2=y (Z@% ~ 205 + 2 (2 = nC)

ik=1 ij=1 i=1
n
_ 1 Y - L
n(n . 2) . . kl n - kk
Jj#i 1#k 13,k=1

then we have:
h(o) = f;—1,1(0) + f2—1,1(0) + fs—1,1(0) +d=foo11(0)+d for all o € S,

So the problem of checking whether f,_;1(0) = 0 everywhere reduces to the problem
of checking whether (3.3) is constant. We remark that this is a problem of computing
the central projection of a LAP (see the discussion in Section 4.1.1).

We can state fairly simple necessary and sufficient conditions for h(c) to be
constant for all o € S, in terms of the matrix D. They are exactly that D can be
written a sum of a row matrix and a column matrix, and has entries that sum to

n
zero. That is for some pair of vectors a,b € R" such that Z(ai + b;) = 0, we have:

i=1
(a1+bl a1+b2 al—}—bn\
a2+b1 (L2+b2 (L2+bn
D= , dij = (ai +by)
\an+b1 a, +by ... an+bn/

If D has this form, then it is clear that the objective value will be the constant
Z(ai + b;) for all o € S,,. Any two vectors a and b define such a D (and, without
i=1

loss of generality, we can choose a; = 0).
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Consider for i, k > 2 two permutations, with oy satisfying o1(1) = 1 and o4 (i) = &,

o9 satisfying o9(1) = k and 09(i) = 1, and 01(j) = 09(j) for all j # 1,4. Then:
h(o1) — di1 — dig = h(02) — dig — dix
For h to be constant on all permutations, we have h(o1) = h(o3), hence:
din + dix, = dig + diy for all 4,k > 2 (3.4)

These (n — 1)? conditions determine D given its initial row and column (ie. vectors
a and b above), so any D yielding a constant A must have the above form.

To summarize, the conditions (3.4) where D is obtained from the tensor C via
(3.3) guarantee that the coefficient of x,_;; in the central projection of f7 is 0.
This is the natural condition for a QAP (1.2) to be of the “pure” type of Section 2.2.
Expanding and simplifying (3.4) in terms of C' gives the conditions (2.2). If we

assume that C is symmetric, then (2.2) simplifies further to (2.1).

3.2.4 Conditions Determining the Symmetric Special Case

We can perform a similar analysis for the character x,_211. We calculate the
projection P,_511(C) of C into L?_, | ® Maty:

N L I [ [ (g
Pae21a(O) = 5 ( S D L END DL D DA OYcH
j'=1

=1 i'=1 j'=1

Some simple sufficient conditions arise from forcing the projection P,_5;1(C) of

C into L72172,1,1 ® Mat,, to be zero, that is setting:

1 1 < 1 < 1 < 1<

D R ij L it L it | L 2R

5 (ckl i n_zc“ + nZCil nZ%l +— Zc,’cl> =0  forall kI

=1 =1 j'=1 j'=1

The resulting condition is that for all k,! the matrix A = (a;;) given by ay; = ¢ is
the sum of a symmetric matrix, a matrix with constant columns, and a matrix with

constant rows.
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We can use the approach of Section 3.2.3 to get weaker sufficient conditions.
Define the tensor D = (d}}) by:

L L ",
=i —di= S S - Zcm%Zc;f
j'=1

=1 =1

Note that dz = —dﬁ for all 4,4, k, [, and in particular that d% = 0. Note also that

Z dkl =0 for all 7, k,l. We want conditions so that:

i=1

Z dU(Z Joli) = for all o € S,

1,j=1

Since dy;, = 0 for all 4, k, [, the terms in the above sum are non-zero only if 7 # j.
Using the approach of Section 3.2.3, we can reduce the above expression to checking

the following linear conditions on D:
di2 +d =d? +d forall i # j,k #1 (3.5)

By subtracting the equation with term d from the equation with term d and using
the fact that df, = —dJ;, we find:
(di3 + dig) — (di3 + dfy) = (dif + diy) — (dif + i)
& dh-dy=did, & dj=d)
It is clear that if d = d%, for all i # j, k # [ then (3.5) is satisfied. Since d”, = —dJ!
for all ¢, j, k, ! and Z]n'zl d;fl = 0 for all 4, &, [, it suffices to check thisfor 1 <17 < 7 < n.
-1 1
This gives the n(n — 1) (n ) = —(n* — 4n® 4+ 5n — 2n) linear equations (2.3)

2 2

determining the symmetric case of Section 2.3.

3.3 The Central Cone

We have established that the central projection of a quadratic objective function
f lies in a 4-dimensional vector space. If we take the projection of the normal-

ized function f; (computed via Lemma 3.1.1), the coefficient of trivial character
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Xn Will become 0, and the projection g of f; lies in the the 3-dimensional vector

space spanned by Xpn—i11,Xn-22 and Xp—21,. Let us chose a convenient basis in

span{Xn—1,1, Xn—2,2 Xn—2,1,1 }:
G =Xn-11=DP—1, g2=Xn—22+ Xn-2,1,1 +3Xn-1,1 = p2 — 2 and

93 = Xn-21,1 — Xn-22=1—2t.

For the purposes of understanding the distribution, we can also assume that max-
imum of f lies at the the identity permutation ¢ (Remark 3.1.2). By Lemma 3.1.4,
the maximum of ¢ also lies at .

For this reason, we restrict our attention to the part of the 3-dimensional space
of normalized central projections g that are maximized at €. The condition that g is

maximized at € can be expressed as n! — 1 linear homogeneous equations:
g(e) > g(o) foralle 0 € S,

These define a convex polyhedral cone K in R®, which we call the central cone.

It turns out that K has a reasonably simple structure, being spanned by only 4
(if n is even) or 5 (if n is odd) extreme rays. The condition g(¢) = 1 defines a plane
H in R? and the intersection B = H N K is a base of K, that is, a polygon such that

every g € K can be uniquely represented in the form g = Ah for some h € B.

Lemma 3.3.1 (Description of Central Cone). Let us define functions

—np+n-+p*—2
T = ’
n—2
’/'2:].—2t,
2np —3p—2n—p? — 2t +6
Ta =
° n2 —5n + 6 ’
p+2t—2
Ty=— and
n—2
—2np+3p®> —3p+2tn+n —3
T50 = .

n2—2n—3
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Then

i. If ¢ € S,, is the identity, then
r1(e) = ra(e) = r3(e) = ra(e) = rs50(e) = 1;

ii. If n is even then ri,r9,r3 and r4 are the vertices (in consecutive order) of the
planar quadrilateral B = conv{rl, 9,73, 7“4} that is a base of the central cone

K;

iii. If n is odd then ri,79,73,74 and 75, are the vertices (in consecutive order) of
the planar pentagon B = conv{rl, ro, T3, 7‘4,7“50} that is a base of the central

cone K.

The base of the central cone is illustrated in Figure 3.1.

r r

2 2
r r
3 3
I‘l rl
r
50
r
r, r50 4
n is even .
n is odd

Figure 3.1: The Base of the Central Cone

Proof. A function g € span{gi, go, g3} can be written as a linear combination g =
@191 + aags + azgs. Then g(e) = ay(n — 1) + az(n? — 2) — as and the conditions

g(e) > g(o) are written as

ar(n—1)+a(n® = 2) + a3 > a1 (p(0) — 1) + ax(p®(0) — 2) + a3(1 — 2t(0)),
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which for o # € are equivalent to

2t(0)

a1+ ax(n+p(o)) + agm

> 0.

We now need to find out which of the possible choices of p(c0),t(o) yield equations
of facets (faces of dimension 2), and which are redundant and can be eliminated.
Equivalently, we can adopt the dual perspective, and find the extreme rays of the
dual cone. This is a technical computation, which we have left for the end of the
section (Lemma 3.3.3).

Using this result, in the case of even n, the system reduces to

a1 +nag >0
a1+ (2n—3)ags >0

(3.6)
a1+(2n—2)a2+a3 Z 0

a1 +noag+ a3 >0

whereas for odd n, the system is equivalent to

a1 +nay >0

a;+ (2n—3)ay >0

a;+(2n—2)as + a3 >0 (3.7)

o+ (n+1ag+a3>0

nay + nfay + (n — 3)az > 0.
The set of all feasible 3-tuples (c, ag, a3) is a polyhedral cone, which, for even n,
has at most 4 extreme rays and for odd n has at most 5 extreme rays. We call an
inequality of (3.6)—(3.7) active on a particular tuple if it holds with equality.

It is readily verified that for even n the following tuples span the extreme rays of
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the set of solutions to (3.6):

(=n, 1, 0) 4th and 1st inequalities are active
(0, 0, 1) 1st and 2nd inequalities are active
(2n -3, -1, 1) 2nd and 3d inequalities are active
(1, o0, -1 3d and 4th inequalities are active

and that for odd n the following tuples span the extreme rays of the set of solutions

to (3.7):
(—n, 1, 0) 5th and 1st inequalities are active
(O, 0, 1) 1st and 2nd inequalities are active
(2n—3, -1, 1) 2nd and 3d inequalities are active
(1, 0, —1) 3d and 4th inequalities are active
(—2n -3, 3, —n) 4th and 5th inequalities are active

We obtain 1, 1y, 73, 74 and 75, by scaling the corresponding linear combinations o g1+
iage + 393 so that the value at the identity is equal to 1 and hence r{,r5, 73, 74 and

75, lie on the same plane in span{g;, g2, g3}- O

Remark 8.3.2 (Generators of the Central Cone). We observe that r; and rs, have
spike distributions (in particular, r; has the “sharp spike” distribution of Section 2.4.1)
corresponding to the cases of v, = 1 and 5 = 1 respectively in Theorem 2.4.1, that r,
has the damped oscillator distribution corresponding to the case of 7o = 1 and that r3
and 74 have bullseye distributions corresponding to the cases of 73 = 1 and 4 = 1 re-
spectively. If n is even then r5, ¢ K, for if o is a product of n/2 commuting 2-cycles,

so that p(o) = 0 and t(0) = n/2, then r5,(c) = (n*+n—3)/(n®*—2n—3) > 1 = r3,(e).
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3.3.1 Asymptotic Geometry of the Central Cone

We make some brief observations on the structure of the central cone. The geom-
etry of the cone depends on the basis chosen for R®. A natural choice for a basis
is the three characters xn—1,1, Xn—22 and Xn—2,1,1. The coordinates we found in the
proof of Lemma 3.3.1 are with respect to the basis ¢1, g2, ¢93. Changing basis to

Xn—1,1, Xn—2,2, Xn—2,1,1 We get the following generators:

Ty (-n+3, 1, 1)

n—2

ra: (0, =1, 1)

T3 ! n2—5n+6(n 6, —2, O)
1
Ty : n_2(1, 1, -1)
1
Tso - m(—Qn - 6, n + 3, —n + 3)

From this data we can compute the angles between the generators with respect to the
basis Xn—1,1, Xn-2,2, Xn—2,1,1. 1wo facts are worth noting. First, the angle between
the (opposite) extreme rays 1 and r3 is asymptotically 7, so the cone becomes very
wide. Second, the function r5, approaches the plane defined by r; and r, as n — oc.
In fact the distance between the point of r5, on the unit sphere and this plane is
O(n~?). So 5, is “almost” a linear combination of 7; and r, for large n.

We conclude this section with the proof of technical lemma used in Lemma 3.3.1.

Lemma 3.3.3.  For a permutation o € S,,, 0 # ¢, let a, € R? be the point

Qg = (p(G), m)

n—p(o)
Let P = conv{aa 1o # 5} be the convex hull of all such points a,-.

If n is even, the extreme points of P are

(0,0), (n—=3,0), (n—2,1) and (0,1).
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If n is odd, the extreme points of P are
(0,0), (n—3,0), (n—2,1), (0,(n—3)/n) and  (1,1).

Proof. The set of all possible values (p(a), t(a)), where o # ¢, consists of all pairs of
non-negative integers (p, t) such that p < n—2, 2t < n and, additionally, p+2t < n—3
or p+ 2t = n. To find the extreme points of the set of feasible points (p, 2t/(n —p)),
we choose a generic vector (71,72) and investigate for which values of p and t the

maximum of

V1P + V2
n—p

is attained.
Clearly, we can assume that v, # 0. If 75 < 0 then we should choose the smallest
possible ¢t which would be £ = 0 unless p = n — 2 when we have to choose t = 1.

Depending on the sign of vy, this produces the following pairs

() ={(0,0, (n-3,0), (r-21)}.

If 45 > 0 then the largest possible value of 2¢/(n — p) is 1. If ; > 0 this produces

the (already included) point
(p,t) = (n —2,1).

If vy < 0 we get

(p,t) = (0,n/2) for even n

and
(p,t)z{(0,(71—3)/2),(1,(n—1)/2)} for odd n.

Summarizing, the extreme points of P are

(0,0), (n—3,0), (n—2,1), (0,1) for even n
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and
(0,0), (n—3,0), (n—2,1), (0,(n—=3)/n), (1,1)  for odd n

as claimed. O

3.4 Some Estimates

In this section we make some estimates of the number of permutations satisfying
certain conditions. We need these estimates to prove the distributional results in the
following sections.

We begin with a Markov type estimate, which asserts, roughly, that a function

with a sufficiently large average takes sufficiently large values sufficiently often.

Lemma 3.4.1. Let X be a finite set and let f : X — R be a function. Suppose

that f(z) <1 for all x € X and that

‘X‘Zf > 3 for some (> 0.

zeX

Then for any 0 < v < 1 we have
o e X: f@) > Br}] > B(L—)IX].

Proof. We have

ﬂ_me 1 Y @) ‘ > e
reX f(x)<By wf(w > By
[{z - £( >ﬂ7}|

Hence

{z: f(z) > Bv}] > B(1 - )| X].
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We next estimate the fraction of permutations that have no fixed points and no

2-cycles.

Lemma 3.4.2 (Permutations with no Fixed Points and 2-cycles).  The frac-
tion of permutations o € S,, without fixed points is e '(1 + o(1)). More precisely, it
is equal to d,, see Definition 1.1.8. Similarly, the fraction of permutations without

fixed points and 2-cycles is e 3/2(1 + o(1)).

Proof. We use an exponential generating function for this problem as described in,

for example, pp. 170-172 of [GJ83]. The cycle index of a permutation o is:
Z(O’) — H x&cycles of length 7 in ¢|

Then we can define:

250 = = 3 7(0)

’ oESy

Now [GJ83] shows that the exponential generating function for all permutations is:

D" Z(Sy) = exp (Z %)

n>0 i>1

Then the exponential generating function for the cycle indices of all permutations

with no fixed points is given by:

ox (Z _)
i>2

We count the number of permutations by weighting the cycles by their length, via
substituting 2’ for z;. This gives an exponential generating series in z for the number
of permutations of size n with no fixed points. Extracting the coefficient of 2™ /n!,

we get:
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The final step uses the Taylor expansions for 1/(1 — z) and exp(—z):

1 ) —1)¢ .
:zZzz and exp(—z)zz(i!)zZ

i>0 i>0

We can observe that d; > % for 7 > 2.
Similarly, the exponential generating series for the number of permutations with

no fixed points or 2-cycles is:

1 (=2) —22
— X [
— P (—2)exp |

We can expand this into Taylor series as:

: -1 —1)kk
PIED DR P

i>0 >0 ) k>0

iy

Taking the coefficient of 2" and rearranging terms, we get the number of permutations

with no fixed points or 2-cycles:

k12 2 [T flok 2k
k=0 =0 k=0
Since 0 < d; <1, and d; — e ! as i — 00, the sum converges to e ° as n — oo,
and in particular is at least % for n > 3. O

Recall the Definition (1.1.9) of ¢(o).

Lemma 3.4.3. We have

1 1
TER) Z t(o) = 51/(71 — k),

o€U(g,k)

where v is the function of Definition 1.1.8 and ¢ is the identity permutation.

Proof. For a pair of indices 1 <17 < 7 <n, let

1 if o(i)=j and o(j) =1
tij(o) =
0 otherwise.
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Then t(o) = Z tij(0). Let us compute the average of ;;(o) over Ul(e, k). To choose
i<j

a permutation o € U(e, k), one has to choose k fixed points in (]

k) ways and then

a permutation without fixed points on the remaining n — k symbols in d,_x(n — k)!
ways. Hence |U(e, k)| = d,—gn!/k!. To choose a permutation o € U(e, k) where (ij)
is a 2-cycle, one has to choose k fixed points in (";2) ways and then a permutation
without fixed points on n — k — 2 symbols. Hence the total number of permutations

o€ Ul(e, k) with t;;(c) =11is

<" N 2) b g o(n—k — ) = dn2(n =21

k k!

Thus for all pairs ¢ < j we have

|U(e, k)| o) nld,_k n(n —1)
and
1 1 n\v(in—k) v(n—k)
to)=Y ——u tii(o) = =
T 2 =S X 6= (5)inmn ="
oeU(e,k) 1<J o€U(g,k)

3.5 Proof of Bullseye Special Case

We are now ready to prove our main results. We begin with Theorem 2.1.1. The
proof is based on the observation that A satisfies the conditions of Section 2.1 if and

only if A € L,, + L,,_25 (see Section 3.2).

Proof of Theorem 2.1.1. Without loss of generality, we may assume that the maxi-
mum of fo(o) is attained at the identity permutation ¢ (see Remark 3.1.2). Excluding
the non-interesting case of fo = 0, by scaling f, if necessary, we can assume that
fo(e) = 1. Let g be the central projection of fy. Then by Parts (2) and (3) of

Lemma 3.1.4, we have g = 0 and 1 = g(¢) > g(o) for all o € S,,. Moreover, since
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A€ L,+ L, 55, by Parts (1) and (3) of Proposition 3.2.4, g must be a linear combi-
nation of the constant function yx, and x,_22. Since g = 0, g should be proportional

to Xn_2,2 and since g(¢) = 1, we have

2 2t +p* — 3p
n? _ 3an—2,2 = 5 -

9= n? — 3n

Now o € Ul(e, k) if and only if p(c) = k. Applying Part (1) of Lemma 3.1.4 and

Lemma 3.4.3 we get

1 oy L J:k2—3k+u(n—k)
el 2 PO ), 2, 0

and the proof follows. 0

Proof of Theorem 2.1.2. As in the proof of Theorem 2.1.1, we assume that the max-
imum value of fj is equal to 1.
Let us estimate the cardinality |U(r, k)| = |U(e, k)|. Since o € U(e, k) if and only

if o has k fixed points, to choose a o € U(e, k) one has to choose k points in ("

k) ways

and then choose a permutation of the remaining n — k£ points without fixed points.

Using Lemma 3.4.2, we get

n

U(r k)| > (k> (n— k)!/3 = 3%

Applying Lemma 3.4.1 with 8 = 3(n, k) and X = U(7, k), from Theorem 2.1.1 we

conclude that

Plocs,: flo) > 1B(nk)} > L= OCRIUTR)

L Q=80 k)
- 3k!
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3.6 Proof of Pure Special Case

In this section, we prove Theorems 2.2.1 and 2.2.2. We observe that A satisfies the
conditions of Section 2.2 if and only if A € L, + L2711+ Ly—22 (see Section 3.2). As
in Section 3.5, the L,, component contributes just a constant to f. Since the L,_;
component attributed to the Linear Assignment Problem is absent, we call this case
“pure”.

In the proof of Theorem 2.1.1, the conditions on A restricted the central projec-
tion g of f; to the one-dimensional subspace spanned by x, 1. With the added
conditions that g(¢) > g(o) for all permutations o, g must lie on a ray in the inte-
rior of the central cone, K. By fixing the value of g at the identity, g(¢) = 1, we
determine g completely.

In Theorem 2.2.1, the conditions on A are relaxed so that the central projection
g of fo lies in the two-dimensional subspace spanned by X,-21,1 and x,—22. Hence
with the added conditions g(¢) > g(o) for all permutations o, g must lie in a two-
dimensional slice of the central cone. We call this slice K,, the pure central cone.
Since it is a two-dimensional convex cone, it must be spanned by two extreme rays.
We compute the extreme rays of K, by intersecting the subspace spanned by X, 21,1
and xp_22 with the the central cone. Conveniently, one of the extreme rays of the
central cone is also an extreme ray of K,, namely r,. We check that ro =1 — 2¢ is

in the subspace spanned by x,_22 and x,_211:

1, 3 1, 3
Xn—2,1,1 ~ Xn-2,2 = (51’2 - 510 —t4+1)—(t+ §p2 — Ep) =1—=9¢

Then 7, is extreme for K, since it is extreme for K.

The second extreme ray lies between ry and ry4 if n is even, and between r5, and
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ry if n is odd. By computing the intersection, we get the second extreme ray:

_p2—3p—n—6t+2tn+4

T6e if n is even

n?—4n+4
n—3 1 1 4—n
= o 27“4 + . 27“1 = n 2Xn—2,2 + an—Z,l,l
Y 3pn_2 7:;:’;%” 3 s odd
2n —4 n+1 -1
= 3 37“4 + e 37“50 = ﬁXn—QJ + n—_?)Xn—Q,l,l

We have scaled the extreme rays so that the values at the identity e are ry(c) =
ree(€) = reo(c) = 1.

Remark 3.6.1. We observe that r, has the damped oscillator distribution correspond-
ing to the case of 7y = 1 in Theorem 2.2.1, whereas rg. and 74, both have the bullseye
distribution corresponding to the case of 75 = 1 in Theorem 2.2.1. If n is even, then
60 ¢ K,. Indeed, if o is a product of n/2 commuting 2-cycles, so that p(c) = 0 and

t(c) = n/2, then r¢o(c) = (n? — 3n +3)/(n? —4n + 3) > 1 = ry.(e).

r r

2 2
K K
p p
"6e "6e
n iseven " 60 n isodd 6o

Figure 3.2: The Central (Pure) Cone

Proof of Theorem 2.2.1. We proceed as in the proof of Theorem 2.1.1 (Section 3.5)



65

with some modifications. Without loss of generality, we assume that the maximum
of fo(o) is attained on the identity permutation € and that fy(¢) = 1. Let g be the
central projection of fy. Since A € L, + L,_29 + L, 211, by Parts (1), (3) and (4)
of Proposition 3.2.4, g is a linear combination of X, Xp-22 and X, 211. By Part
(2) of Lemma 3.1.4, we have g = f; = 0, so g is a linear combination of X, 2, and
Xn—2,1,1 alone. Moreover, by Part (3) of Lemma 3.1.4, we have 1 = g(¢) > g(o) for
all 0 € S,. Hence g lies in the central cone K,. From our description of the cone
above, we conclude that ¢ must be a convex combination of r; and ry, for n even and
a convex combination of 71 and 7, for n odd. Applying Part (1) of Lemma 3.1.4, we
can replace the average of fo over the set U(e, k) by the average of g over U(e, k).
The proof now follows by Lemma 3.4.3 and the observation that o € Ul(g, k) if and

only if p(o) = k. O
To prove Theorem 2.2.2, we need need one preliminary result.

Lemma 3.6.2. Let g be a linear combination of g1 = Xp—22+Xn-2,1,1 = p?—3p+1
and g2 = Xpn_21,1 — Xn—22 = 1 —2t such that g(¢) = 1. Fora3 < k <n—1, let o), be
a permutation such that p(oy) = k and t(oy) = 0 and let 0 be a permutation such
that p(0;) = k and t(6;) = 1. Then

k2 —3k+1

max{g(ox), 9(0k)} > a1

Proof. Since g(¢) =1, g1(¢) =n? —3n+ 1 and g(¢) = 1, we can write

p?—3p+1

—_— 1-2¢
1712—377,—#14_%( )

g=a

for some «; and ay such that a; + a; = 1. Then

g(ak)—a1n2_3n+1+a2 and
k* —3k+1
9(0r) = 2 — Qo
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We observe that g(oy) and g(f) are linear functions of o; and ay and that for

a;=1 and ay=0

we have
k> —3k+1
Let
n?>—3n+1 1 n?—3n+1 1
A= = and Ay = _Z
o —sk+1) T2 M M Tom skt 2

Then )\1, A2 > 0 and
)\19(0']6) —+ )\gg(ek) =1 + oy = 1.

Comparing this with (3.8) we conclude that there are no values «; and ay such that

a1 +ay =1 and
k? —3k+1

9(ok), 9(0k) < ]

O

Proof of Theorem 2.2.2. Without loss of generality, we may assume that the maxi-
mum value of fj is attained at the identity permutation ¢ (see Remark 3.1.2). Ex-
cluding an obvious case of fy = 0, by scaling f, if necessary, we may assume that
fo(e) = 1. Let g be the central projection of fy. As in the proof of Theorem 2.2.1,
we deduce that g is a linear combination of x,_22 and x,_21,1 and that g(e) = 1.

Let us choose a 3 < k < n — 3 and let X, be the set of permutations ¢ such that
p(o) = k and t(o) = 0 and let Yy be the set of permutations # such that p(f) = k
and t(f) = 1. To choose a permutation ¢ € Xj, one has to choose k fixed points in
(:) ways and then a permutation without fixed points or 2-cycles on the remaining
(n — k) points. Then, by Lemma 3.4.2

1n!

1/n !
> 2 k=
Xkl > (k) (n=k)'=s4
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Similarly, to choose a permutation 6 € Y}, one has to choose a 2-cycle in (’2‘) ways,

k fixed points in (";2) ways and a permutation without fixed points or 2-cycles on

the remaining (n — k — 2) points. Then, by Lemma 3.4.2

1/n\ [(n—2 n!
> 2 k)=
|Y’“‘—5(2>< k )(” E=2t= 100

Let us choose a permutation o € X and a permutation 8 € Y}, and let Z = X, if

g(0) > g(f) and Z =Y}, otherwise. Then

n!
7| > —
= 104!
and by Lemma 3.6.2,
k* —3k+1
g(o) > o forall o€ Z.

The set Z is a disjoint union of some conjugacy classes X (p) and for each X(p) by

Remark 3.2.1, we have

and hence

1 2 1
7 Z fo(G)Zﬂ
)

2_ )
cexir n 3n+1

Applying Lemma 3.4.1 with X = Z and 3 = (3(n, k), we get that

(1 — ’Y)ﬂ(n; k)

P{a € Sp: folo) = vB(n, k)} Z 0k

O

Remark 3.6.3. It follows from the proof that we are able to choose the required num-
ber of “good” permutations among the permutations whose distance to the optimal

permutation 7 is n — k.
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3.7 Proof of Symmetric Case

The proofs of Theorems 2.3.1 and 2.3.2 are essentially the same as the proof in
the previous section. In this case, A satisfies the conditions of Section 2.3 if and only
itAeL,+ Ly, 11+ Ly_25. Again, the L, component contributes just a constant to
f.

We then have the central projection g of f; lying in the two-dimensional subspace
spanned by X,_11 and X,_22. Hence with the added conditions g(¢) > g(o) for all
permutations o, g must lie in a two-dimensional slice of the central cone. We call
this slice K, the symmetric central cone. Since it is a two-dimensional convex cone,
it must be spanned by two extreme rays. We compute the extreme rays K, by
intersecting the subspace with the central cone. It turns out that one of the extreme

rays of the central cone K is also an extreme ray of K, namely:

_ 2np—3p—2n—p*—2t+6
N n?—5n+6

T3

We check that r3 is in the subspace spanned by x,-1,1 and x,—2,:

2 2
XLl 2 Z5n+ 6

r3 = Xn—2,2

n—2
The second extreme ray lies between r; and r4 if n is even, and between r; and

50 1f 1 1S odd:

_—np+n+p +p+2—4 o
Tte = o — 4 1I n 1s even

1 1 4—n 1

=i+ -r4 = ———Xn_ —— X
21+24 2n_4Xn 1,1+n_2Xn 2,2

—n2p+np?+ni4+np+2nt—4n—3p+ 3 F s odd
r = IINn1
7o 2n2 —Tn+3

n—2 +n+1 1—n n 2n
= r 'S = — _ _
m—1 "' —1 T gy LT e s

Xn—2,2
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We have scaled the extreme rays so that the values at the identity e are r3(¢) =
r7e(€) = 1r70() = 1.

Remark 3.7.1. We observe that r3 has a bullseye distribution corresponding to the
case of v; = 1 in Theorem 2.1.1, whereas 77, and 77, both have spike-type distri-
butions corresponding to the case of 79 = 1 in Theorem 2.2.1. If n is even, then
r70 ¢ K. Indeed, if o is a product of n/2 commuting 2-cycles, so that p(c) = 0 and
t(o) =n/2, then r7,(0) = (2n? —4n+3)/(2n? —Tn+3) > 1 = r4,(g). Geometrically,

the symmetric cone K looks exactly like the pure cone K, Figure 3.3.

r r

3 3
K K
S S
"7e "7e
n iseven "o n isodd "o

Figure 3.3: The Central (Symmetric) Cone

Proof of Theorem 2.3.1. The proof of Theorem 2.3.1 is completely similar to the
proof of Theorem 2.1.1, using the extreme rays r3, r7. and r7, in place of ry, r¢. and

T60- O
To prove Theorem 2.3.2, we make a computation similar to Lemma 3.6.2.

Lemma 3.7.2. Let g be a linear combination of g1 = Xp—110 = p—1 and g, =

2Xn-29 + 3Xn-11 = P> + 2t — 3 such that g(¢) = 1. Fora 3 < k <n — 3, let o}, be
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a permutation such that p(oy) = k and t(oy) = 0 and let 1, be a permutation such

that p(n,) = 0 and t(ng) = k. Then

3k—5
n?—kn+k+2n-5

max{g(ox), g(m) } >

Proof. We can write

p—1 p?+2t—3
+a27n2_3

=«
g ln—l

for some «; and ay such that a; + a; = 1. Then

k—1 k2 —3

g(ak):aln—1+a2n2—3 and
() = L 2k-3
IUlk) = = T T ey

We observe g(o) and g(n) are linear functions of a; and «y and that for

o = kn—k—2n+2 and o — 3 —n?
Y 2t kn—k—2n+5 2 2 4kn—k—2n+5
we have
3k—5
g(ox) = g(nk) e W and i + s (3.9)
Let
n? + 2kn — 3n — 2k kn? — k?>n —n? 4+ k%> + 3n — 3k
)\1: and )\2: .
k(3k —5) k(3k —5)

Then A, Ao > 0 and

Mg(ok) + Aog(me) = a1 + a2 = 1.

Comparing this with (3.9), we conclude that there are no values ay, s such that

a1 +oay =1 and
3k -5
n2—kn+k+2n->5

g(ox), g(m) <
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Proof of theorem 2.3.2. The proof is similar to that of Theorem 2.2.2 (Section 3.6).
Without loss of generality, we assume that the maximum value of fy is 1 and is
attained at the identity permutation €. Let g be the central projection of f;. We
deduce that g is a linear combination of x, 11 and X, 22 and hence a linear combi-
nation of g; and g9, and that g(e) = 1. Let us choose a 3 < k < n — 3 and let X}, be
the set of permutations o such that p(c) = k and t(0) = 0 and let Y be the set of
permutations 7 such that p(n) = 0 and ¢(n) = k. As in the proof of Theorem 2.3.2,
we have
| Xk| > %Z—:

To choose a permutation 1 € Yj, one has to choose k transpositions (2-cycles) in

n!

(n — 2k)1k12F

maining n — 2k points. Hence, by Lemma 3.4.2

ways and a permutation without fixed points or 2-cycles on the re-

Let us choose a permutation ¢ € X; and a permutation n € Yy and let Z = X if

g(o) > g(n) and let Z = Y} otherwise. Then

n!
7 > —
121 = 5k!2k

and by Lemma 3.7.2,

3k 5
> forall o€ Z.
99) 2 T kvan—s oral o€

The proof now proceed as in the proof of Theorem 2.2.2; Section 3.6. 0

Remark 3.7.3 (Scarcity of relatively good values). Let us consider the function f of

Section 2.3.2. We observe that

[ = airs + asrye,
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for

n?—nm-—2n+3m—3 dn —2m — 2
and oy =

o =

n—-—nm+2n+m-—>5 n2—nm+2n+m-—>5

Thus f is a convex combination of r3 and 7., hence 1 = f(¢) > f(o) for all 0 € S,

and f = 0. Remark 3.2.5 implies that f is a generalized function (1.2) of the required
type.

3.8 Proof of General Case

The proof of Theorem 2.4.1 follows from our description of the central cone
(Lemma 3.3.1), and the observations used in the proof of Theorem 2.2.1 in Sec-
tion 3.6.

To prove Theorem 2.4.2, we need another lemma showing that the central pro-

jection has good values on at least one of several large classes of permutations.

Lemma 3.8.1. Let g be a linear combination of g = p— 1, ¢go = p?> — 2 and
gs = 1 — 2t such that such that g(¢) = 1. For a2 < k < n — 2, let oy be a
permutation such that p(ox) = k and t(ox) = 0, let n be a permutation such that

p(n) = 0 and t(n) = 1 and let § be permutation such that p(f) = t(#) = 0. Then

max{g(ak),g(n)ag(e)} > n2 — ]]jn_-fk -2

Proof. We can write

p=1l . p°—2
= (8%
g 'n—1 n2 —9

—+ 043(1 — Qt)

for some a1, ay and a3 such that o + as + a3 = 1. Then

k—1 k* —2

g(ak):ozln_1+a2n2_2+oz3
() g 2
=— -« -«
g\n n—1 23 _ 9 3
o 2
g(0) = —— — + as.

n—1 n? —2
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We observe that g(oy), g(n) and g(f) are linear functions of «;, e and a3 and that

for
k(1 —mn) n? —2

M= Tkt k—2 T _pktk_2 MW

we have
E—2
glor) =g = 9(0) = s and artartaz=1. (3.10)
Let
n?z —2n n? —nk n? —kn —2n + 2k
M=—" A= d X\ = .
LT ok 2T gp_gq MG 2%

Then Al, AQ, Ag > 0 and

Ag(or) + Xag(m) + A39(0) = ay + g + a3 = 1.

Comparing this with (3.10), we conclude that there are no values «;, e and ag such

that a; + as + a3 =1 and

k—2
n2—nk+k—2

g(ak)ag(n)ag(e) <
]

Proof of Theorem 2.4.2. The proof follows those of Theorem 2.2.2 (Section 3.6) and
Theorem 2.3.2 (Section 3.7) with some modifications. Let X} be the set of all per-
mutations ¢ such that p(c) = k and ¢(o) = 0. As in the proof of Theorem 2.2.2, we

have
1n!

X, >
"“|—5k!

Let Y be the set of all permutations o such that p(c) = 0 and ¢(o) = 1. To choose

a permutation o € Y, one has to choose a 2-cycle in (”) ways and then an arbitrary

2

permutation of the remaining (n — 2) symbols without fixed points and 2-cycles.
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Using Lemma 3.4.2, we estimate

! 1
n (n—=2)!'=—nl

1
Y > co—rr
52(n — 2)! 10

Let us choose a permutation o, € X, a permutation n € Y and a permutation
0 € Xy. Let us choose Z to be one of X, X; and Y, depending where the maximum

value of g(ox), g(n) or g(f) is attained. Hence
P n!

> 0

= 5k!

and by Lemma 3.8.1,

k—2
g(U)ZnZ—kn+k—2 forall o€ Z.

We proceed now as in the proof of Theorem 2.2.2, Section 3.6. O

3.9 Examples of QAP’s and their Central Projections

We remarked in the statements of our distributional results (Theorems 2.2.1, 2.3.1
and 2.4.1), that, at least for even n, we can find a function of type (1.1) that has
average value 0, maximum value 1, and attains the averages on the rings U(e, k)
specified in the theorems. It is easy to build a tensor of type (1.2) that meets these
conditions (even for n odd), for example by using linear combinations of the tensors
introduced in Remark 3.2.5. In this section we construct examples of type (1.1)
satisfying the same conditions. Stated another way, we will show that any function
in the “even” central cone K of Section 3.3 (that is, the convex hull of 71,79, 73 and
r4) is the projection of some QAP of type (1.1) with average value 0 and maximum 1.
This provides an interesting source of pathological QAP’s.

It is not obvious to us whether the annex to the central cone for n odd formed

by adding rs, to the list of generators is also the projection of a QAP of type (1.1)
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with the correct averages on the rings U(e, k) and maximum 1. It follows from
Remark 3.3.2 that functions in the annex (and not on the boundary of the even
cone) are not maximized at the identity for even n, since the average value of rs, on
the permutations which are a product of n/2 transpositions is too large. The results
of Section 3.3.1 show that the additional part of the central cone for odd n is small
and contains functions not very different from functions that lie in the central cone.

To construct our examples, we recall from Section 3.3 that the projection g of a
function f with f = 0 lies in a 3 dimensional vector space. Then we can determine g
uniquely by determining its value on three independent coordinates. It is convenient
to use the coordinates vy, v9, v3 Where v; is the value of g at the identity, €, v is the
value of g on any 2-cycle, equal to the average value of f on 2-cycles, and v3 is the
value of g on any 3-cycle, equal to the average value of f on 3-cycles.

From our formulas for r{, 75,73 and 74, it is easy to compute the values vy, vs, v3
at these extreme points for the base of the central cone. We substitute p=n,t =10
toget v;, p=n—2,t=1for v, and p=n — 3, t = 0 for v3. Since the maximum of
1 is attained at the identity, we will have v; = 1 for each extreme point r;. The full

list of v;’s for each r; are summarized in Table 3.1.

Value| Ray— 71 T2 | T3 T4
U1 1 111 1
() -1 111 1
—2n+7 n—3
— | 1 |1
vs n — 2 n— 2

Table 3.1: Values of Extreme Rays at €, on 2-cycles, and on 3-cycles

We now give our example, a QAP with data (A, B) that depends on four real
parameters b, c,d,e. We will show that any point in the convex hull of r{,ry, 73,74

is the central projection of some QAP defined by (A, B) for a suitable choice of the
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parameters. The matrix A = (a;;) does not depend on b, ¢, d, e:

(010... O\

000 ... 0
1 ife=1,7=2
;5 = A= 000 ... 0
0 otherwise

\0 00 ..0)

The matrix B = (b;;) is given by:

f

0 if t=35 (Olccc...c\
1 if i=1,j=2
b oif i=2,7=1
¢c iti=1,7>30rj=2,i>3

d if i=2,7>30rj=1,1>3

e otherwise \d c e e e ... 0)

\

Then the objective function f given by (1.1) is:

F(0) = boioti) @i = bo(n)of2)

ij=1
This problem has average value f = 0 over all permutations exactly when:

14+b+2(n—2)c+2(n—2)d+(n—2)(n—3)e=0 (3.11)
Clearly f(¢) = 1. This is a maximum of f if and only if:

b,c,d,e <1 (3.12)

In fact, since A is constant, the projection g of the QAP (A, B) is a linear function

of the parameters b, c,d,e. Thus Equations 3.11 and 3.12 define a polytope in the
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parameter space. The central projection of the set of QAP’s (A, B) defined by this
polytope is the set of g attainable from QAP’s of the above form. Since the maximum
is 1 and the average is 0, this projection is a convex set contained in the base of the
central cone. To show that we get the entire base (for even n), it is enough to show
we get each of the extreme rays ri, 79,73, 74. Then by scaling the matrix B, we will
get the entire (even) cone.

We know that f has a maximum of v; = 1 at the identity. We compute the

average of f on 2-cycles:

2 n?>—5n+6
= 2(n — 2 b
(O n(n—1) ( 5 +2(n—2)c+ >
and on 3-cycles:
3 n3 —9n? + 26n — 24
= 2(n — 2 -3 2(n — 2)d
e et : +2(n = 2)(n - e+ 20~ 2d)
Now observe that if we take:
—4n — 6

b,c,d=1and e =

then v, =1 and v3 =1

So by our calculations in Table 3.1, the projection of f must be rs.
If we take:

—n?+3n—4 -5
H—nthenvgzlandvgzn

be,e=1and d =
oe=an 2(n — 2) n—2

In this case the projection of f is ry.
If we take:

—n?+3n—-14 -2 7
n—i_—nthen v9 = —1 and v3 = nt

b,d,€=1andc= 2(n—2) ﬁ

In this case the projection of f is ry.

And finally, if we take:

¢,de=1and b= —-n?>+n+1then vy =—1and v3 =1
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In this case the projection of f is ro. This completes the proof.

Remark 3.9.1 (QAP’s with few large values). All the functions in this section attain
their maximum of 1 at many points including the (n — 2)! permutations fixing both
1 and 2. While optimal values are abundant, we can choose B so that these are the
only “large” values of the objective function. This then gives us examples where the
number of near-optimal permutations is relatively small.

Consider the QAP given by setting the entries of B so that:

-2
n2—n—2

b=1 and c=d=e=
This is a symmetric QAP, with average value 0 over all permutations. The maximum of
1 occurs at the 2(n—2)! permutations that fix the set {1,2}. However, the remaining
(n? —n—2)(n — 2)! permutations given an objective value of —2/(n? —n — 2), worse
than the average value. This shows that the frequency estimate of dn~2 in Part (i)

of Corollary 2.4.3 cannot be improved, even in the symmetric case.

Consider now choosing B so that:

—1 2
and e =
n—2 n? — 2n

b=1, c=d=

The central projection of the QAP defined by (A, B) has the bullseye distribution of
Section 2.1. We can check that this has an average value of 0, and 2(n — 2)! optimal
values of 1. Most permutations will yield a positive objective value of 2/(n* — 2n),
however only the optimal permutations will exceed this value. Thus the frequency
estimate of dn~2 in Part (i) of Corollary 2.2.3 cannot be improved, even in the

bullseye case.



CHAPTER IV

Concluding Remarks

In this chapter, we discuss how our methods apply to other optimization problems,
and to the study of heuristics. We include a small sample of computational results
that we compare to our picture of the distribution. We also show how to derandomize
the algorithm of Corollary 2.2.3 in the bullseye case of Section 2.1. Finally, we state

some open problems.

4.1 Related Optimization Problems

Our methods can be applied to study the distributions of other combinatorial
optimization problems. In this section we discuss linear and higher dimensional

assignment problems, and their special cases.

4.1.1 The Linear Assignment Problem

Using our methods to analyze the distribution of values in the Linear Assignment
Problem (LAP) of Definition 1.1.4, we note that the central projection g of f of type
(1.4) is spanned by the characters x, and x,—1,1 from Section 3.2. So if we preprocess
the function f (cf. Remark 3.1.2) so that it has average value 0 and maximum 1 at

the identity ¢, the central projection g of f around this maximum will be :

Xn—1,1(<7) . plo) —1
9(0) = n—1 n—1

79
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where p(o) is the number of fixed points in o (see Definition 1.1.9). Then g has
the “bullseye”’-type distribution that we suggest is characteristic of relatively easy
optimization problems.

We noted in Definition 1.1.4 that if the central projection of a QAP is spanned by
the characters x, and x,—1,1, then that QAP reduces to a LAP, which is solvable in

polynomial time.

4.1.2 Higher-dimensional Assignment Problems

We can also consider the higher dimensional assignment problems and their spe-
cial cases. The k-dimensional assignment problem [Law63] is the problem of maxi-

mizing for some 2k-dimensional tensor C' the function:
FO) = Y it (4.1)
0142 peee i =1
Then the central projection g lies in 2*-dimensional subspace spanned by characters
that we could in principle find explicitly. The difficulty lies in working in this high
dimensional space.

We cite two examples of higher dimensional assignment problems that are con-

sidered interesting optimization models.

4.1.3 The BiQuadratic Assignment Problem

The BiQuadratic Assignment Problem (BiQAP) is a 4-dimensional assignment
problem, where the (8-dimensional) tensor C' decomposes as a product of two (4-
dimensional) tensors. That is, for some A, B € R*, the tensor C in Equation (4.1)
is:

G1igi3ia _ o Do
Ciijajaja — i iniziaDj jagsja
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This problem arises in Very Large Scale Integrated circuit design (VLSI), see for

example [BCK94].
4.1.4 The Weighted Hypergraph Matching Problem

In the Weighted Hypergraph Matching Problem we are given a k-uniform hyper-
graph on a set of n vertices. The edges of such a hypergraph are subsets of size k;
each edge e; has an associated weight w;. The problem is to find the maximum weight
matching, or set of disjoint edges. Some applications of this problem are found in
[Vem98].

We can reduce Weighted Hypergraph Matching to k-dimensional assignment
much as we reduced TSP to QAP. We encode the incidence matrix of a maximum
matching in A = (a;,4,..i, )

L if {dy,...,0} ={mk+1,... ,mk+k} for some 0 <m < [}]

ailiz...ik =

0 otherwise

and we encode the weights w; of the edges e; in B = (b;,,..i, ):

we/(7) if {i1,...ix} = edge e for some e € E
bilig...ik =

0 otherwise
Then this problem reduces to maximizing Equation (4.1) for the tensor C' given by:

11928 b

c J1J2---Jk

G1goedn - Qiriz..dk

4.2 Notes on Heuristics

As mentioned in Section 1.3.2, in light of the practical value and theoretical
difficulty of the QAP, there has been an effort to find effective heuristics for the

problem. There is a good survey of several heuristics in [BCPP99]. In this section,
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we consider our results from the perspective of designing and analyzing heuristics.
We are particularly interested in why, as we noted in Section 1.3, many heuristics
have produced better results on TSP that on the general QAP.

Heuristic methods typically have embedded in them some type of “local search”
that involves looking for new good permutations nearby known good permutations.
This strategy is well suited to a “bullseye” type of distribution. Consider the extreme

case of a tensor whose value is exactly:
2xn-22(0) = 2t(0) + p*(0) — 3p(0)

at any point (see Section 3.2 and Remark 3.2.5). The optimum is n? — 3n at the
identity, €. Suppose we begin a local search at a permutation ¢ that agrees with the
identity € in k points. Then the objective value is f(o) = k? — 3k + 2t, where t is the
number of transpositions in . The local search procedure will consider permutations
which differ from o by a single 2-cycle.

If t > 0, o transposes two elements of €. Then replacing o by the permutation o’
which swaps these two elements but otherwise agrees with o, increases the number
of fixed points by 2, while decreasing the number of transpositions by 1. As long as
k > 1, this improves the objective value to f(o') = (k+2)2 - 3(k+2)+2(t—1) =
k? + k + 2t — 4, so local search will explore this direction. If t = 0, take ¢’ to differ
from o by a single transposition in such a way as to improving the number of points
agreeing with € by 1 (assuming o # ¢). This changes the objective value to at least
f(0") > (k+1)>—=3(k+1) = k* — k — 2. Then this offers an improving direction if
k > 1 that is correct in the sense that it reduces the distance to the global optimum.
Repeating this procedure (taking any improving direction at each step) finds the
optimum in at most n — k moves, assuming that we start with £ > 2. It is not

too difficult to choose a starting point which agrees with the optimum on at least 2
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points.

Of course for interesting optimization problems, the objective values are not con-
stant on rings around the optimum, improving directions can sometimes lead away
from the global optimum, and the local search can get trapped at local maxima. We
suggest that the case of the “spike” distribution seen in the QAP, but not the TSP,
is much worse for local search — the search will usually move away from the global
maximum, except when the permutation o is very close to or very far away from the
optimum. Since most permutations are far away, a local search will tend to begin
and remain far away from the local maximum. It may be that in these cases, better
search strategies rely heavily on random sampling.

The distribution of a typical function f around its maximum in the symmetric
QAP is a mixture of the bullseye and spike distributions. If we examine the analysis
in the proofs (for example, Section 3.7), we see that this type of distribution causes
the most difficulty for our estimates — these are the distributions on which the class
of permutations far from the optimum performs modestly, and the class of permu-
tations that perform well near the optimum is relatively small. We will call such a
distribution a “diluted spike”, see Figure 4.1.

This interference of the bullseye and spike distributions (which, in some sense, are
“pulling in the opposite directions”), provides in our opinion, a plausible explanation
of the computational hardness of the general symmetric QAP even in comparison with
other NP-hard problems such as TSP.

It seems that in practice, the most successful heuristics combine some aspects of
local search and random choice. We mention two heuristics very briefly. The Tabu
search strategy (detailed in [GL98]) is based on local search, but allows the solution

to decrease at some steps. This algorithm stores information about where it has been
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Distribution of values of the objective function with respect

to the Hamming distance from the maximum point

. ]

Maximum Large average Medium average Small average
value

Figure 4.1: Diluted Spike Distribution

in order to prevent looping. Tabu search often makes the same decisions as a pure
local search; decreasing the objective value at some steps can prevent the algorithm
from getting stuck at a local maximum.

The Greedy Randomized Adaptive Search Procedure (GRASP) [LPR94] first con-
structs an initial permutation by randomly assigning some values, and then fixes the
remaining ones by a greedy algorithm. Local search is then applied to the resulting
permutation. This process can be repeated for many initial random assignments.
The combination of random choice and local search seems to us to be a reasonable

strategy for finding the optimum in a “diluted spike” distribution.
4.2.1 Proofs of Optimality
Finding the maximum of a general QAP, even with these heuristics is quite difficult.

Finding a proof optimality is more difficult still, and typically follows the discovery

of the optimum only after substantial additional time and effort (see for example
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[ABGLO02]). The optimality proofs usually rely on a branch-and-bound strategy.

The branch-and-bound strategy is to recursively partition the feasible set into
“branches”, and, for each branch, either search it completely, or show that the ob-
jective values in the branch are bounded above by some feasible solution. Branches
that are bounded do not have to be searched, and can instead be “cut”. For the TSP
and QAP, the branching is typically done by fixing certain parts of the assignment.
The idea is that if the fixed part of the assignment is wrong, then the branch can be
cut.

Given a bullseye-type distribution, this approach can be quite successful. Af-
ter finding some permutations with large objective values (ideally the optimum), it
should be possible to cut many branches that lie in regions far from the optimum,
and hence have a low average value.

In the situation of a spike-type distribution, it seems that it should be very
difficult to implement an effective branch-and-bound procedure, since the numerous
large values far from the maximum will appear in almost every branch. This leaves
little room for error in the estimates of the maximum on each branch.

We remark that if we believe we have discovered the optimum, but lack an op-
timality proof, then, after shifting this point to the identity, we can calculate the
central projection (see Section 3.9), and hence the distribution around the presumed
optimum. We hope that this type of qualitative information would be useful in

designing branch-and-bound algorithms.

4.3 Computational Results

In this section, we apply our methods to some examples that are considered to be

of practical interest. We compute the central projection around the optimum, and
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sample points to gauge how well this approximates the distribution.

We restrict our attention to functions of type (1.1) for two reasons. First, as
we remarked in Section 1.3, the generalized problem (1.2) is seen much less often
in practice. Second, it follows from Remark 3.2.5 that any function in the central
cone (Section 3.3) is actually an objective function of type (1.2). Then for objective
functions of this form, the range of possible distributions is quite wide, and our
estimates are tight. For functions of type (1.1) it is possible that the range of
distributions is more restricted, and that our estimates could be improved. The
computations in this section offer some data to fuel speculation.

A number of interesting examples of QAP’s of type (1.1) have been collected in
the QAPLIB [BKRO7]. These are the standard test sets for computational approaches
to the QAP. As such, they have the advantage that many of them have been solved
through years of effort. Unfortunately, it is still not feasible to solve QAP’s larger
than about n = 30 to optimality. For larger problems, [LP92] suggests a method of
generating QAP’s that have a known optimal solution, but are sufficiently generic for
use in testing algorithms. We include some results on these generated problems in
Section 4.3.3.

We also take examples from the Nugent, or nug series of problems introduced in
[NVR68]. This series is well suited for our experiments, providing several related
problems based on a simple structure. These problems have been among the most
studied QAP test cases, and have now been solved [ABGL02]. They are derived
from the type of “facility location” problem suggested by Koopmans-Beckmann (see
Section 1.3). The problems involve placing factories on a given rectangular grid
(say 5 x 6 for n=30) with Manhattan (L!) distances. So the distance matrix A is

symmetric, with zero diagonal, and small positive integer entries (at most 9 in the
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5% 6 case). The flow matrix B is also symmetric and consists of small positive integer
entries. The original examples were for n = 12,15, 20, 30. The remaining examples
were created later by deleting rows and columns (factories) from the flow matrices,
and building the distance matrices from new (sometimes non-rectangular) grids.
We classify the nug problems as part of the symmetric special case of Section 2.3,
but, since the row and columns sums vary, not part of the pure special case of

Section 2.2.

4.3.1 Central Projections for the nug Problems

To compute the central projection, we use the methods of Section 3.9. We begin
by finding the global minimum 7, relying on the work compiled in the QAPLIB, and
we shift the problem so that 7 lies at the identity £ (see Remark 3.1.2). We are
interested in finding out whether the shape of the central projection of the shifted
problem is a bullseye distribution (Section 2.1), a spike distribution (Section 2.3), or
a diluted spike with properties of both (Section 4.2). For this purpose, we translate
the objective function f so that it has an average over all permutations of 0, and
scale f so that it has a maximum (rather than a minimum) of 1 at the identity.

It is convenient to work with problems that are symmetric (such as the nug’s)
and have even n. Then, after preprocessing, the central projection g of f must be a
convex combination of the extreme functions r3 and r7. generating the even central
symmetric cone K (see Section 3.7). That is, ¢ = ayr3 + agrre, where oy + ap = 1.
So we need to find ;. Having fixed the value at the identity € to be 1, we note
that o is completely determined by the value of g on any conjugacy class other than
the class containing the identity. The smallest such class is the set of 2-cycles. We

observe that r3 has an average value of 1 on 2-cycles, while r;, has an average of 0 on
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2-cycles. So we conclude that in this case o is exactly the average of g on 2-cycles.
For each even nug problem from QAPLIB (all 12 < n < 30 except for n = 26), we
have computed the parameter a; as outlined above using MATLAB. The results are

presented in Table 4.1.

nug 12 14 16 18 20 22 24 28 30
ap || 0.694 | 0.733 | 0.774 | 0.802 | 0.828 | 0.844 | 0.850 | 0.874 | 0.882

Table 4.1: Values of Parameter a; on nug Problems

Note that the bullseye case corresponds to a; = 1, and the spike case corresponds
to a; = 0 (see Remark 3.7.1). Thus the central projections of the nug problems lie in
between these extremes and are a type of “diluted spike” (see Section 4.2). It turns
out that they correspond very closely to the worst case for our estimates.

In the proof of the symmetric case (Section 3.7), we saw that there was a tradeoff
between the strategies of picking permutations near the optimum and picking permu-
tations far from the optimum. The most difficult case fell in the middle, where both
strategies have equal (and relatively low) success. This transition point depends on
the size n of the problem, and a parameter m. In Remark 3.7.3, we calculated for

symmetric QAP’s the value of «; at which the transition occurs in terms of n and m:

n?—nm-—2n+3m—3

“ = n?2—nm-+2n+m-—>5

From the algorithmic point of view, m is roughly a measure of the computational
resources available to us. In the case of sampling, the value of m represents the
number of points on which a permutation ¢ must agree with the optimum 7 to have
a sufficiently large expected value. By letting £ = m in Theorem 2.2.2, we get an
approximation guarantee for sampling, similar to Corollary 2.4.3.

Consider fixing v = 1/2 in Theorem 2.2.2. To ensure that the expected number
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of permutations meeting our guarantee is at least 1, the number of permutations we

would have to sample is:

10m!2™(n? — mn +m + 2n — 5)
(3m — 5)

This estimate holds for m > 3. At m = 3, the size of the sample is quite reasonable —
120n%(1+0(1)), but as we increase m the constant grows quickly. Given the computer
power available today, we could consider using m = 7 (though we would not advocate
doing s0), where the size of the sample is 403200n%(1+0(1)), but probably not m = 8.

We calculate the oy value for the transition points (worst cases for Theorem 2.2.2)

at both m = 3 and m = 7 in the Table 4.2. We remark that the parameter oy for

n = 12 14 16 18 20 22 24 28 30
Atm=3 | 0.692 | 0.733 | 0.765 | 0.790 | 0.810 | 0.826 | 0.840 | 0.862 | 0.871
Atm=17 | 0.628 | 0.688 | 0.730 | 0.763 | 0.788 | 0.809 | 0.825 | 0.851 | 0.862
o for nug || 0.694 | 0.733 | 0.774 | 0.802 | 0.828 | 0.844 | 0.850 | 0.874 | 0.882

Table 4.2: Transition Points for oy Compared to nug Parameters

the nug series of problems is very close to the parameter that gives the worst case

central projection for our estimates.

4.3.2 Results of Sampling the nug Problems

For each nug problem we sampled 20000 points, and computed at each point the
ratio of the objective value of the zero-average function f; to the global minimum,
that is fo(0)/fo(7). The code we used is reproduced in Appendix A. At 20000 points
the shape of the distribution does not change much if we vary the random seed (the
code in Appendix A shows the seeds used in the results presented here). With this
code running on math department hardware takes about 1 second to sample 500 nug

points. The choice of 20000 points per problem represents the limit of our patience.
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In Figures 4.2 and 4.3, we show histograms of the set of ratios obtained in the

problems nugl2 and nug30. In both cases we see that the objective values are

6000 T T T T T T T

5000

4000

3000

2000

1000

Figure 4.2: Frequency of Ratios fo(o)/fo(7) for nug12

concentrated near the average of 0, with the frequency of occurrence declining rapidly
in either direction. The shapes of the distributions of nug12 and nug30 are similar,
except that the nug30 values are more tightly packed around the average of 0. The
distribution is similar for the other nug problems, with the variance shrinking as n
increases.

We have computed the standard deviation of the approximation ratios over all

permutations in Table 4.4. This is obtained by dividing the standard deviation of the

n = 12 14 16 18 20 22 24 28 30
Std. Dev. || 0.213 | 0.188 | 0.170 | 0.156 | 0.143 | 0.151 | 0.125 | 0.115 | 0.109

Table 4.3: Standard Deviation of Approximation Ratios for the nug Problems
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Figure 4.3: Frequency of Ratios fo(o)/fo(7) for nug30

solutions by the global maximum; a recipe for calculating the variance (and hence
the standard deviation) of a QAP is found in [Bar].
In Table 4.3, we show the approximation ratios obtained by taking the best

permutation from each sample. These approximation ratios clearly decline with n,

n = 12 14 16 18 20 22 24 28 30
Best Ratio || 0.752 | 0.680 | 0.662 | 0.585 | 0.582 | 0.588 | 0.479 | 0.435 | 0.411

Table 4.4: Best Approximation Ratio Obtained in Samples for nug Problems

but are substantially better than the values guaranteed in Corollary 2.2.3.
We are interested in finding how the fraction of “good” values depends on n. To

this end, we have, for each nug problem, computed the fraction of the 20000 sample
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values attaining an approximation ratio of:

folo) o v

fo(r) — h(n)

for h(n) € {1,n,n? n*}. The constant v is chosen so that the fraction of nug20

values above v/h(n) is constant. We took /h(20) = 1/20. We see that the fraction

T tns | 12 | 14 | 16 | 18 | 20 | 22 | 24 | 28 | 30
h(n)
1/20 0.414 | 0.404 | 0.388 | 0.373 | 0.365 | 0.380 | 0.343 | 0.332 | 0.321
1/n 0.355 | 0.361 | 0.364 | 0.365 | 0.365 | 0.391 | 0.367 | 0.378 | 0.378
20/n? 0.256 | 0.294 | 0.324 | 0.350 | 0.365 | 0.401 | 0.401 | 0.392 | 0.413
400/n° | 0.136 | 0.219 | 0.284 | 0.328 | 0.365 | 0.411 | 0.406 | 0.436 | 0.446

Table 4.5: Fraction of Permutations above y/h(n) for nug Problems

of permutations greater than a constant v decreases as n increases, the fraction
greater than 7/n stays roughly constant, and the fraction greater than y/n? and
v/n® appears to increase towards 1/2. It appears that our estimates are fairly weak
for this series of problems. It is interesting to ask if our estimates could be improved,
either for all objective functions of type (1.1), or at least for classes of problems
similar to the nugs with some modeling value.

We comment that nug22 has more large values the one would predict based on
the rest of the series. If we look at table 4.2, we can also see that nug22 is further
from the “worst case” and closer to the bullseye than is suggested by the remainder

of the series.

4.3.3 Computational results for the lipa Problems

We repeated the computations performed on the nug problems on the 1ipa prob-
lems [LP92] from the QAPLIB [BKR97]. These problems are designed as large test
cases for the QAP. They are constructed so as to have known optimal solution, but

to otherwise resemble naturally occurring intractable QAP’s. There are two series of
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generated lipa problems in the QAPLIB. The problems in both series are symmet-
ric, and have sizes n = 20, 30,...,90. The “a” series, which we denote lipa_a has
the entries of A drawn from {0, 1,2}, and the entries of B drawn from {0,1,...n}.
For the “b” series, denoted lipa_ b, the entries of both A and B are drawn from
{0,1,...n}.

In Table 4.6, we see that the parameter oy for the generated 1ipa problems are

close matches for the “worst case” «; values for m = 3 and m = 7. It may be that

n = 20 30 40 50 60 70 80 90
Atm=3 0.810 | 0.871 | 0.902 | 0.922 | 0.934 | 0.944 | 0.951 | 0.956
Atm=7 0.788 | 0.862 | 0.897 | 0.918 | 0.932 | 0.942 | 0.949 | 0.955

o for lipa_a || 0.802 | 0.869 | 0.902 | 0.921 | 0.934 | 0.943 | 0.950 | 0.956
o for 1lipa b || 0.808 | 0.870 | 0.903 | 0.922 | 0.934 | 0.944 | 0.951 | 0.956

Table 4.6: Transition Points for a; Compared to 1ipa Parameters

these “worst case” values are typical of generic (and presumably the most difficult)
QAP’s. It is interesting to note that the generated 1ipa QAP’s and the nug QAP’s both
have averages on rings around the optimum very close to the averages that are most
difficult for our estimates.

In Table 4.7 we show the approximation ratio obtained by taking the best permu-

tation from a random sample of 2000 on each lipa problem. These approximation

n = 20 30 40 50 60 70 80 90
For lipa_a || 0.375 | 0.263 | 0.250 | 0.186 | 0.167 | 0.161 | 0.157 | 0.151
For 1ipa_b || 0.336 | 0.181 | 0.147 | 0.116 | 0.101 | 0.085 | 0.085 | 0.055

Table 4.7: Best Approximation Ratio Obtained in Samples for 1ipa Problems

ratios decline with n as in the nug series, and are somewhat worse at comparable
values.
We have also computed the variance for the lipa problems, and recorded the

standard deviation of the approximation ratios over all permutations in Table 4.8.
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We notice that in these cases, as well as the nug problems, the variance of the

n = 20 30 40 50 60 70 80 90
S.D. lipa_a || 0.096 | 0.072 | 0.060 | 0.051 | 0.046 | 0.042 | 0.039 | 0.036
S.D. lipab || 0.074 | 0.049 | 0.036 | 0.029 | 0.024 | 0.021 | 0.018 | 0.016

Table 4.8: Standard Deviation of Approximation Ratios for the 1ipa Problems

approximation ratio is decreasing with n. There is some difference in the variances
between series at comparable sizes, this can likely be attributed to the structure of
the problems. The standard deviations and best approximation ratios follow similar
downward trends in all three sets of problems. From the point of view of sampling, it
would make sense that having a small variance with respect to the maximum would
make a problem difficult to approximate.

We can again test which fraction of the values attains a given approximation
ratio, with the ratio possible depending on n. We use the setup of Section 4.3.2,

Table 4.5, to get the 1lipa results in Table 4.9. We notice the same trends in the

T ns || 20 | 30 | 40 | 50 | 60 | 70 | 80 | 90
h(n)
lipa_a 1/20 || 0.310 | 0.245 | 0.206 | 0.164 | 0.146 | 0.120 | 0.104 | 0.082
lipaa 1/n | 0.310 | 0.324 | 0.344 | 0.348 | 0.365 | 0.364 | 0.377 | 0.377
lipa_a 20/n2 || 0.310 | 0.381 | 0.423 | 0.438 | 0.454 | 0.459 | 0.469 | 0.469
lipab 1/20 || 0.249 | 0.153 | 0.084 | 0.042 | 0.020 | 0.008 | 0.002 | 0.001
lipab 1/n || 0.249 | 0.249 | 0.250 | 0.243 | 0.250 | 0.243 | 0.240 | 0.242

lipa_b 20/n? || 0.249 | 0.328 | 0.371 | 0.387 | 0.417 | 0.424 | 0.431 | 0.436

Table 4.9: Fraction of Permutations above «y/h(n) for 1ipa Problems

lipa problems that we saw in the nug problems, with the 1ipa problems worse at
comparable n, and the lipa b worse than the lipa_a. Since the averages of the
problems on rings around the optimum are very close together, the difference must
come from variance within the rings. This is confirmed by comparing the standard

deviations of the three series.
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4.4 Derandomization

Another question is whether the approximations of Corollaries 2.2.3 and 2.4.3 can
be obtained deterministically. In this section, we will show that in the bullseye case
of Section 2.1, the algorithm of Corollary 2.4.3 (picking points at random) can be
derandomized in polynomial time.

Our algorithm has two steps. The first step is to find a class of permutations
with large average (expected) value. Then we apply a standard derandomization
technique to find a permutation in this class which achieves this expected value. In
[GY02], the authors use the second step of this algorithm on the QAP. They compute
a permutation ¢ which has fo(o) > 0, and then show that if n is a prime power,
the domination number of o (see Section 1.3.1) is at least (n — 2)!. They call the
process of finding a permutation that meets the expected value on a class the “Greedy
Expectation Algorithm”.

We begin with some definitions. Let us take a subset S of size m. We will call a
function og : S — {1,2,...n} a partial assignment if it assigns to each i € S a distinct
element of {1,2,...n}. So og is the restriction of a permutation to S. We denote
by o5(S) the set of elements {og(s)|s € S}. Consider the set of all possible partial
assignments of S into the set {1,2,...n}. There are ny) :=n(n—1)...(n—k+1)
possible such assignments, one of which is the restriction of the optimal permutation
T to S.

Given a partial assignment og the conditional expectation of o given os is the

average of the objective function over all o that restrict to og in their first S positions:

Elolos]= Y f(o)
U\S:;S

Using the observations of Lemma 3.1.1, we can compute the conditional expectation
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in time O(n?) for objective functions of type (1.1) and in time O(n*) for objective
function of type (1.2). This calculation is also done in [GY02]. We include the
formula for the expectation at the end of this section, as Lemma 4.4.1.

We now describe our algorithm. Suppose we have a bullseye QAP, and we want to
produce a permutation o satisfying the estimate of part (i) of Corollary 2.2.3. That
is, suppose we take fp as in Section 2.1, where fy is maximized at some permutation
7 not known to us, and we want to find, for some « chosen in advance, a permutation
o satisfying:

fo(o) 2 = ()

We first need to identify a large class of permutations on which the average of f; is

at least %f@(T). Let us fix a k£ > 3 such that:

k* — 3k +v(n —k)
n? —3n

o
n2

>

S

We can do this independently of n with £k = O (\/a) Then by Theorem 2.1.1, the
set of permutations that agree with 7 on at least k£ points has at least this average
value.

In particular, for at least one subset Sy of the n(;) subsets of n, the set of permu-
tations agreeing with 7 on Sy has average value at least a/n”. There are n) possible
partial assignments of Sy, one of which agrees with 7 on S,,. Thus we can get a par-
tial assighment og, that has conditional expectation at least a/n? by enumerating
the n() possible assignments of the ny k-subsets of {1,2,...n}.

Now we will extend the partial assignment og, into a permutation o which at
least meets the expectation, using the Greedy Expectation Algorithm. In this pro-
cedure, we assign the values of {1,2,...n} \ Sy sequentially using conditional ex-

pectation. Let S O Sy be the set of currently assigned values, and og be the corre-
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sponding partial assignment. If [ is the lowest remaining unassigned value (that is,
min{{1,2,...n} \ S}), we compute the conditional expectations for each possible
assignment of o (/). At least one of these must meet the overall expectation of o(S).
We choose such a value (say, the largest), and fix this to be the value of o({).

By iterating this procedure, we build a permutation with expected value at least
a/n?. The total time for this procedure is O(n) - ng) - n* +n?-n-n) = O(n?**+2) for
objective functions of type (1.1), and O(n*4) for objective functions of type (1.2).
In fact, if we are lucky, it will be much faster, since we can stop search the partial
assignments once we have any one that yields a conditional expectation of a/n?.

We can use the same algorithm to obtain a permutation deterministically that
meets the estimate of part (ii) of Corollary 2.2.3 in mildly exponential time exp{n”}
for some 3 < 1.

It does not appear to be as easy to derandomize the pure, symmetric and general
cases of Section 2.2, 2.3 and 2.4. The difficulty is finding a partial assignment with
large conditional expectations.

We finish by giving the formula for the conditional expectation of f given a partial

assignment og. This is derived in [GW70].

Lemma 4.4.1.

Blolos] =33 e+ o 000 S s

i€esS jes i€S j¢S j'¢os(S)
A e Z > ci
z¢S JES ¥'das(S) Z¢S i'¢os(S)

+(n— (n—k—1) Z Z iy

,]¢S Z’aJI¢US( )
i#] i'#5!
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4.5 Further Questions

The estimates of Theorems 2.1.1, 2.2.1, 2.3.1 and 2.4.1 for the number of near-
optimal permutations can be used to bound the optimal value by a sample optimum
in branch-and-bound algorithms. Those estimates are (nearly) best possible for the
generalized problem (1.2). However, it is not clear whether they can be improved in
the case of standard QAP (1.1) or how to improve them in interesting special cases.

In particular, we ask the following question:

o Let f:S5, — R be the objective function in the Traveling Salesman Problem
(cf. Section 1.2), let f be the average value of f and let fo = f — f. Let 7 be
an optimal permutation, so that fo(7) > fo(o) for all 0 € S,. Is it true that
for any fixed v > 0 there is a number 6 = 6(y) > 0 such that the probability
that a random permutation o € S, satisfies the inequality fy(o) > % fo(7) is at

least n 0 for all sufficiently large n?

The small sample of results in Section 4.3 suggests that the answer is “yes”. One way
that we could try to tighten the analysis is to use information from the standard de-
viation and higher moments of the distribution which are computable in polynomial
time.

In [Bar], there is a preliminary results in this direction, obtained by relating the

L*® norm of a function to its L?* norm (that is, its 2k-th moment):

Theorem 4.5.1 (Barvinok). For any a > 0, there exists a u = pu(a) > 0 such

that the fraction of permutations satisfying:

holo) = Z1fo(@)]

is at least n=*. In fact, one can choose j = ca? for some absolute constant c.
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This shows that we have enough permutations with sufficiently large deviation,
however it tells us nothing about the direction of the deviation. It could mean that
we have a many small values (close to the minimum), rather than large values.

As well as finding improved approximation algorithms, it would be very inter-
esting to find corresponding hardness results with an ultimate goal of proving sharp
bounds. No hardness of approximation results with respect to the average are known.

We would like to be able to derandomize our algorithm in the general case of
Section 2.4. In Section 4.4, we showed how we could derandomize our algorithm in
the bullseye case of Section 2.1.

It appears that the problems without linear part (the “bullseye” and “pure” cases
of Sections 2.1 and 2.2) are easier than the general QAP. A possible way to use this
is to split the problem into the pure quadratic and linear parts and try to “estimate

away” the linear part.
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APPENDIX A

MATLAB code for sampling permutations

In this appendix, we include the code used to sample permutations and calculate
the central projections and standard deviations of the nug and 1ipa problems. The
results are presented in Section 4.3. Our results should be reproducible, since we fix
the random seed before each run. The code is written in MATLAB, and grouped into
eight subroutines, each in separate files.

The driver is file test_shell.m.

Il lo s totototo o oo fototots test_shell.m hhhhhtotststslolslolotototstststototosote

h

% Reads a QAP of two MxM matrices A and B from the data file

% <solved_prb_data.m>. This also includes a vector giving the

% optimal permutation P; for now we concentrating on the properties
% of some examples that are either contrived or well studied.

h

% The loop then tests "trials" permutations at random, and returns

% statistics about the best and worst values found, as well as some
% facts about the neighbourhood of the optimum, which we believe

% helps us understand the difficulty of the problem.

% We also call a routine to compute the variance of the values.

b

h

trials= 20000;

values_vec = zeros(l,trials); % Collect approximation ratios.

% Reset random number state to get reproducible results.
randn(’state’,0)

% Input data.
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[M,raw_A,raw_B,P] = solved_prob_data;
conj_a = perm_2_matrix(M,P); % Use to get min at id.
A = conj_axraw_Axconj_a’; % Now min is at id.

B = normalize_b_fast(M,A,raw_B);% Now average is O.

global_min = trace(AxB’); % Calculate global_min.
total_val2=0;

relax_max=relaxed_max(A,B); % Gives an upper bound for problem.
% relax_min=relaxed_min(A,B); % Lower bound.

% max_obj=trace(relax_min*A*relax_min’*B’);

min_obj=trace(relax_max*A*relax_max’*B’);

compare_at = 20; % Test values at this problem size.
gamma = 1/20; % Parameter.
hits = [0 0 0 0]; % Count occurrences of "good" values.

for i=1:trials

Z2 = rand_perm(M) ;

obj_val = trace(Z2*A*Z2’*B’) ;

values_vec(i) = obj_val;

if obj_val < min_obj
min_obj = obj_val;
best_perm = Z2;

end

if (obj_val < global_min*gamma)
hits(1) = hits(1) +1;

end

if (obj_val < global_min*gamma*compare_at/M)
hits(2) = hits(2) +1;

end

if (obj_val < global_min*gamma*compare_at~2/M~2)
hits(3) = hits(3) +1;

end

if (obj_val < global_min*gamma*compare_at~3/M~3)
hits(4) = hits(4) +1;

end

total_val2 = total_val2 + obj_val;

end

% Print statistics
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format compact

% Show best permutation obtained;

% best_perm;

% Sanity check - should average to about O.
Average_of_random_permutations = total_val2/trials

global_min

min_for_random_permutations = min_obj

Approx_ratio_for_min = min_obj/global_min
Freq_of_good_values_vec = hits/trials

avg_on_2cy = sum_on_2cy(M,A,B)*2/M/(M-1);% Avg. f value on 2-cycles
Scaled_avg = avg_on_2cy/global_min 7% shape of dist. (\alpha_1).
% hist(values_vec/global_min)

fvar = find_var_zd(M,A,B);

Calculated_std_dev = sqrt(fvar);

Normalized_csd = -Calculated_std_dev/global_min

format loose

File perm 2 matrix.m converts a permutation in standard notation to a permu-

tation matix. Standard notation is used in the input file.

Il To oo T Toto o oo tototo el Toto o oo Totoe. pETmM_2_matrix.m %hototstotototedstslolototstototootsiesotole
A

function Z = perm_2_matrix(M,ord_a)

b

% Convert a permutation on M numbers from standard notation

% to a permuation matrix Z.

% This matrix acts on the left by multiplication.

A

pl = zeros(M);

for i = 1:M
pi(i,ord_a(1,i)) = 1;

end

Z =pl’;

File normalize b_fast.m calculates the average of the problem over all permu-
ataions, and then subtracts a constant from the entries of B so that the problem
now has average zero. If we use the new B in place of the old B, we “shift” the
distribution so that the average value over all permutations is zero.
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IR Tl Tl lolo o totolotototete normalize_b_fast.m hhhhhhhhhhhhhhhhhhhh %%
h

function B = normalize_b_fast(M,A,raw_B)

alphal = 0;
betal = 0;
alpha2 = 0;
beta2 = 0;
for i=1:M

alpha2 = alpha2 + A(i,i);
beta2 = beta2 + raw_B(i,i);
for j=1:M
alphal=alphal+A(i,j);
betal=betal+raw_B(i,j);
end
end
alphal=alphal-alpha?2;
betal=betal-beta2;
avg_qgap_val = alphalxbetal/M/(M-1)+alpha2*beta2/M;
avg_c = alphal+alpha2;
if (abs(alphai+alpha2) > 0.0001)
normalizing_factor = avg_qgap_val/avg_c;
normalizing b = normalizing_factor*ones(M,M);
else
normalizing_factor = 0;
Problem_is_prenormalized=1 % Problem may already be normalized
normalizing_b = zeros(M,M);
end;
B=raw_B-normalizing_b;

File relaxed max.m produces an upper bound for the problem. The lazy way to
do this is just to hard code a large number, like 10'°.

T I Tl T Tl Tl loTo T totototofote. - xeLaxed_max . Sohhhdhhhhh ool oottt te

h

function X = relaxed_max(A,B)

b

% Given diagonalizable matrices A and B, this function should

% return orthogonal matrix X maximizing <XAX’,B’>.

% It does this by transforming the problem to the diagonal version,
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% and then finding a permutation which puts the elements in the same
% order. Because diagonalizing uses orthogonal matrices, we can
% go back and construct X.

h

[LO, B1] = eig(B’);

L1=1L0’;

[L2, A1] = eig(A);

[discard, ord_a] = sort(diag(Al));
[discard, ord_b] = sort(diag(B1));

M = size(ord_a,1);

pl = zeros(M);
p2 = zeros(M);
for i = 1:M

pi(i,ord_a(i,1)) = 1;

p2(i,ord_b(i,1)) = 1;
end
Z = pl’*p2; % So now Z’*A1%Z*B1l is maximized over perms
X = L1°*Z7%L27;

File rand perm.m makes a random permutation by choosing a vector of (Gaussian)
random numbers, and taking the permutation that sorts this vector into ascending
order.

function Z = rand_perm(M)
Totolotototo oo toto foto o fototo o to o foto o tototo e TADA_pEYM . %Vstotetotote oo totototetotstotototetototele
b
A
% Generates a random permutation matrix of size M.
b
rv = diag(randn(M,1));
[discard, ord_a] = sort(diag(rv));
pl = zeros(M);
for i = 1:M
pl(i,ord_a(i,1)) = 1;
end
Z = pi;

File sum_on_2cy.m sums the values of the objective function over all 2-cycle. From
the discussion in Section 4.3, in the case where A is symmetric, this is sufficient to
determine the central projection of the distribution around the identity.
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Totolotototo oo toto o to o foto oo to to o to oo toto o SUM_ON_2CY .10 %otototototototote oo tetototetototototote ol
h
function Z = sum_on_2cy(M,A,B)
h
% Sums the values of tr(X*A*X’*B’) over 2-cycles (transpositions) X.
% Inputs A and B are M by M matrices, the X’s are matrix
% representations of a permutation.
h
Z=0; % Sum of values of f on 2-cycles
for i=1:M
for j=i+1:M
Tr=ones(1,M); % This 2-cycle.
for k=2:M
Tr(1,k)=k; % initialize

end

Tr(1,j)=1i;

Tr(1,i)=j;

Trm=perm_2_matrix(M,Tr) ;

Z = Z + trace(Trm*A*Trm’*B’);

end

end

The file find_var_zd.m computes the sum of the squares of the objective values
over all permutations of a QAP (A, B). Since the problem has been normalized so
that the average objective value is zero, this sum is exactly the variance.

Tt To ot To o T To o To To o T To o To To ho to To o oo e £ind_var_zd.m Y% bl tolotots ototootols ol

h

% This function calculates the variance of the QAP given by (A,B)

% in n”4 time. In this routine, we assume the diagonals of A and B

% are zero. The routine find_var also keeps track of diagonal terms.
function cvar = find_var_zd(M,A,B)

paliil
pa21ib
pa2lic
pa21id
pa2lle

]
O O O O O
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pa22b = 0;
pa22c 0;

pad = 0;
pbiiil
pb211b
pb21ic
pb211d
pb211le
pb22b = 0;
pb22c = 0;
pb4d = 0;
for i=1:M
for j=1:M
if (j 7= 1)
for k=1:M
if (k =1 & k "= j)
for 1=1:M
if (1 =1 & 17=j & 17=k)
pallll = pal1ll + A(i,j)*A(k,1);
pbl111l = pbl111l + B(i,j)*B(k,1);

1]
O O O O O

end
end
pa211b = pa211b + A(i,j)*A(i,k);
pa2lic = pa2ilc + A(i,j)*A(k,1);
pa211d = pa211d + A(j,i)*A(i,k);
pa2ile = pa2ille + A(j,i)*A(k,i);
pb211b = pb211b + B(i,j)*B(i,k);
pb21ic = pb2ilc + B(i,j)*B(k,i);
pb211d = pb211d + B(j,i)*B(i,k);
pb21le = pb2ile + B(j,i)*B(k,i);
end

end

pa22b = pa22b + A(i,j)*A(j,i);

pa22c = pa22c + A(i,j)*A(i,7);

pb22b = pb22b + B(i,j)*B(j,i);

pb22c = pb22c + B(i,j)*B(i,j);

end
end
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pad

pb4
end
si
82

pad + A(i,i)*A(i,i);
pb4 + B(i,i)*B(i,i);

pallli*pbl111/M/(M-1)/(M-2)/(M-3);
(pa211b*pb211b+pa211c*pb211ic+pa211d*pb211d+pa21le*pb21ie) /M/(M-1)/(M-2);
s3 = (pa22b*pb22b+pa22c*pb22c) /M/(M-1) ;

s4 = pad*pb4;

cvar = sl+s2+s3+s4;

Finally we give a sample input file, solved prob_data.m. This is the data for the
nugl2 problem.

function [M,A,B,P] = solved_prob_data

T h I hhhlllelelo o lolololototods s0lved_prob_data_nugl2.m hhhhhhhhhhhhhhhs
h

% Contains the data for an instance of QAP to try.

% M is the dimension of the problem, A and B are the input matrices.
% Want to minimize trace(Z*A*Z’*B’) where Z is a permutation matrix.
% P is the optimal permutation, found by years of hard work by

% many researchers.

b

% This data is known as '"nugl2"

h

M=12;

A=[01 2312342345,

10

21

32

12

21

32

4 3

23

32

4 3

5 4

B=[0
5 0
2 3

~ e - e -

- e

~ e - e “ e

- e

BN W R NWR N W R

[

W N W PP NDFRE N W, O
SO W O N W b 01 = N W P O = N
B W N P, WODN = O P Ww N
W NP, NN O, WN
O N B NP, N Wk, O, NN~ DN
= N Wb O, N WL, N W
W NP O P WD R, O W

O N O NN P, O, WN P~ N D WwN
O P N N P~ D W W N W

(@]
—_

g O O
a b O -
N O N
N O =
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4 0 0 0 6 2 210 0 O 5 5;

1;

1 5 4 0;

1
0 2 0 2 05 010 6 2 3 3;

1 2 05 010 0 0 O 5

1

0 2 0 210 0 b

110 0 0 O 5 O0;

6 0 510 O
2 4 5 0 O

5 0 0 0 10 10;

15 2 0 5 5 2 0 0 0 5 0;

1

1 4 3 510 5 0 2;

1 0 2 5
1 0 2 5

0 3 010 0 2 0]I;

1
p=[12,7,9,3,4,8,11,1,5,6,10,2];
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ABSTRACT
The Distributions of Values in Combinatorial Optimization Problems

by

Tamon Stephen

Chair: Alexandre I. Barvinok

We study the distribution of objective function values of a combinatorial opti-
mization problem defined on a group, focusing on the Quadratic Assignment Prob-
lem (QAP), and its special case, the Traveling Salesman Problem (TSP). For these two
problems, we estimate the fraction of permutations ¢ such that f(o) lies within a
given neighborhood of the optimal value of f, and relate the optimal value to the
average value of f over a neighborhood of the optimal permutation. We describe a
natural class of QAP functions (which includes, for example, the objective function
in the asymmetric Traveling Salesman Problem) with a relative abundance of near-
optimal permutations. Also, we identify a large class of functions f with the property
that permutations close to the optimal permutation in the Hamming metric of the
symmetric group S, tend to produce near optimal values of f (such is, for example,
the objective function in the symmetric Traveling Salesman Problem). We show
examples of QAP’s where just the opposite happens: an average permutation in the

vicinity of the optimal permutation may be much worse than an average permutation



in the whole group S,,.

We interpret our results algorithmically, obtaining guarantees for simple polyno-
mial and non-polynomial algorithms, and in the context of heuristics. Additionally,
we compare our results to distributional statistics obtained via computational exper-

iments.



