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ABSTRACT. We consider set systems that satisfy a certain octa-
hedral parity property. Such systems arise when studying the
colourful simplices formed by configurations of points of in R
configurations of low colourful simplicial depth correspond to sys-
tems with small cardinality. This construction can be used to find
lower bounds computationally for the minimum colourful simpli-
cial depth of a configuration, and, for a relaxed version of colourful
depth, provide a simple proof of minimality.

1. INTRODUCTION

We are interested in set systems of the following type: the base set
S is partitioned into colours Si,Ss,...S,, for some m, and the sets
consist of one element from each S;. In other words, these are m-
uniform hypergraphs where each hyperedge has a unique intersection
with each colour S;, we will sometimes refer to the sets that belong to
a given system as edges. We call a subset of S colourful if it contains
at most one point from each S;. Thus the edges of any system are
colourful. When a colourful set has a point from S;, we will call this
point the ith coordinate of the set.

We call a colourful set of m—1 points which misses S; an i transversal,
and call any pair of disjoint ¢-transversal an octahedron. We say that
an m-uniform collection of colourful edges forms an octahedral system
if it satisfies the following property:

Property 1.1. For any octahedron §2, the parity of the set of edges
using points from € and a fived point s; for the ith coordinate is the
same for all choices of s;.

The term octahedron comes from the following geometric motivation.
A point p € R? has simplicial depth k relative to a set S if it is contained
in k closed simplices generated by (d+1) sets of S. This was introduced
by Liu [Liu90] as a statistical measure of how representative p is of .S,
and is a source of challenging problems in computational geometry — see
for instance [Alo06], [FRO5] and [RS04]. More generally, we consider

colourful simplicial depth, where the single set S is replaced by (d+ 1)
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sets, or colours, Sy,...,S4.1, and the colourful simplices containing p
are generated by taking one point from each set.

From any such colourful configuration, we can form a system of vec-
tors V where v = (s1,...,8441) is in V if and only if the colourful
simplex described by v contains 0. In this context, ‘i-transversals are
simply vectors with the ¢th coordinate removed, and octahedra are pairs
of disjoint i-transversals. It is a topological fact that such a system sat-
isfies Property 1.1, see for instance the Octahedron Lemma of [BMO7]
for a proof. Thus V is an octahedral system with m = d+1. When the
points of an octahedron Q from V considered as points in R? form a
cross-polytope, i.e. a d-dimensional octahedron, in the geometric sense
that conv(£2) is a cross-polytope and same coloured points are not ad-
jacent in the skeleton of the polytope, then the even and odd case
correspond to 0 lying inside and outside €2 respectively. Figure 1 illus-
trates this in a two dimensional case where 0 is at the centre of a circle
that contains points of the three colours.

FiGURE 1. Two-dimensional cross-polytopes €2 contain-
ing 0 and not.

It is interesting to get lower bounds for the number of colourful
simplices containing p for given configurations, for instance satisfying
convexity properties as described in Section 1.1 below. Besides the in-
trinsic appeal of the problem, its solution is a bound on the number
of solutions to a colourful linear program in the sense of [BO97| and
[DHSTO08]. One strategy for establishing this bound is to show that
certain small octahedral systems cannot exist. In particular, it leads
to two nice combinatorial questions: what is the smallest non-empty
octahedral system in terms of the number of edges on m (i.e. d+1) sets
of m points, and what is the smallest such system where every point
is contained in some edge. In Section 2 we show that the answer to
the first question is m and use this to prove a conjecture about point
configurations. The second question suggests a method of computa-
tionally attacking the colourful simplicial depth problem, see below, at
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least for small dimension. Some progress on this is described in Sec-
tion 3. Finally, in Section 4 we consider some further questions about
octahedral systems.

1.1. Colourful Simplicial Depth Problems. Consider the colour-
ful configurations described above. Without loss of generality we as-
sume that p = 0 and that the points in S U {0} are in general posi-
tion. If the convex hulls of the S;’s contain 0 in their interior, we say
that the configuration satisfies the core condition. Béarany’s Colourful
Carathéodory Theorem [Bar82| shows that the core conditions imply
that 0 must be contained in some colourful simplex. In other words, we
have p(d) > 1 where u(d) denotes the minimum number of colourful
simplices drawn from Sy, ..., Sy that contain 0 for all configurations
with the core condition. The sets Sq,...,S4,1 must each contain at
least (d + 1) points for 0 to be in the interior of their convex hulls,
and since we are minimizing we can assume they contain no additional
points, i.e. that |S;| = d + 1 for each 1.

The quantity p(d) was investigated in [DHSTO06], where it is shown
that 2d < u(d) < d*>+1, that u(d) is even for odd d, and that u(2) = 5.
This paper also conjectures that p(d) = d* + 1 for all d > 1. Subse-
quently, [BMO07] verified the conjecture for d = 3 and provided a lower

bound of p(d) > max(3d, [d(dﬂ)—‘) for d > 3, while [ST08] indepen-

5
dently provided a lower bound of u(d) > LMJ, before [DSX11]

1
showed that p(d) > [%1

A recent generalization of the Colourful Carathéodory Theorem in
[ABBT09] and [HPTO8] relaxes the condition of 0 being in the convex
hull of each S; to require only that 0 is in the convex hull of S; US; for
all i and j, and S; not empty for all i. The analogous quantity u(d),
which denotes the minimum number of colourful simplices drawn from
Si,...,Sqs1 that contain 0 € RY given that |S;| = d + 1 for all ¢
and 0 € S; US; for each i # j, has been investigated in [DSX11]
where it is shown that u®(d) < d+ 1, u®(2) = 3, and p°(3) = 4. The
associated octahedral system of (d+1) points in (d+ 1) colours satisfies
Property 1.1.

Remark 1.2. Colourful simplicial depth was introduced in the context
of lower bounds for ordinary simplicial depth. This problem is quite
challenging even in two dimensions: it has been studied at least since
Kértesi [Kér55]; the bound of 5=n® + O(n?) was established in [BF84],
but the the construction in that paper of a set of points meeting this
bound needed to be revised, see [BMN10]. For general d, finding a
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tight bound remains a challenging problem. Recently Gromov [Grol0]
introduced a topological method which among other things improves
the lower bound. See also [Karll].

1.2. Octahedral Problems. The strong version of Barany’s Colour-
ful Carathéodory Theorem says that when a colourful configuration
satisfies the core condition that every point in S is part of some colour-
ful simplex. Thus the octahedral system generated by such a colourful
configuration must satisfy:

Property 1.3. Every element of {1,2,...,d + 1} appears as the ith
coordinate of some v €V for eachi € {1,2,...,d+ 1}.

In particular, any colourful configuration satisfying the core con-
dition must generate a system V satisfying Property 1.1 and Prop-
erty 1.3. For example, the low colourful simplicial depth configurations
of [DHSTO06] generate such a system with (d+ 1) sets of (d+ 1) points,
containing (d*+ 1) vectors. We define v(d) to be the minimum number
of vectors in an octahedral system of (d + 1) points in (d + 1) colours
satisfying Properties 1.1 and 1.3, and v“(d) to be the minimum num-
ber of vectors of a similar system satisfying Property 1.1 only. Then
we have v(d) < u(d) < d®> +1 and v°(d) < u®(d) < d+ 1. In Sec-
tion 2 we show that v°(d) = u®(d) = d + 1. In Section 3 we show that
v(d) = d* + 1 for d = 2,3, and conjecture that it holds for all d. In
particular, computation of v(d) for small d gives us a finite procedure
that can prove lower bounds for u(d).

Remark 1.4. In [DHSTO06] it was observed that p(d) is even for odd d.
Similarly it is easy to see that when m = d 4 1 is even, all octahedral

systems have an even number of vectors. In particular, both v(d) and
v°(d) are even for odd d.

2. PROOF THAT p°(d) =d+1

A construction in [DSX11] shows that v°(d) < u®(d) < d+ 1 for
d > 2. In fact, in this section we show that any non-empty octahedral
system of (d+ 1) sets of (d+ 1) points has at least (d+ 1) vectors, and
hence that v°(d) = p®(d) = d + 1.

Proposition 2.1. For any d > 2, we have v°(d) = p°(d) = d + 1.

Proof. Assume that there is an octahedron €2 consisting of two i
transversals and a point s € S; such that there are an odd number
of edges using points from €2 and s. Then it follows immediately from
Property 1.1 that there is at least one edge that uses points from (2
and any point in S;. Therefore v%(d) > d+ 1 as |S;| = d + 1.
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Assume then that there exists no such octahedron with odd parity,
but that the system contains some edge E. We view FE as being formed
by ai-transversal T and a point s € S; and generate edges in the follow-
ing way. Consider the d disjoint ‘i-transversals T;forj=1,2,...,dgen-
erated from the remaining points, and the d octahedra €21, s, ... Qy
given by pairing 7 with 7" for j = 1,2,...,d. For each j, besides F,
there is at least one other edge that uses s and the points from €2; due
to the even parity. Therefore v°(d) > d + 1.

In both cases v°(d) > d + 1. Thus we have v°(d) = p°(d) = d + 1
as vO(d) < p®(d) < d+1. O

In Figure 2 we illustrate the 2-dimensional configuration described
in [DSX11] where 0 € conv(S; U .S;) for all i # j and is contained in
exactly 3 colourful simplices. In general, the construction is to place

FIGURE 2. Minimal 2-dimensional configuration for the
relaxed core condition.

one point of each of the first d colours below the equator in such a
way that 0 € conv(S;). Then the conditions are satisfied regardless
of the position of the points of S;,;. These points are placed near
the north pole in order that each one generates a unique colourful
simplex containing 0: the simplex is formed using the d points below
the equator.

We remark that if we remove the condition that |S;| > d+1 for each
1 then it is easy to modify the proof to show that O lies in at least
min; |S;| colourful simplices, and the example can be modified to show
that this is tight.

3. COMPUTATIONAL APPROACH

For a given d, the computational approach consists of ruling out a
given value k for v(d) via an exhaustive computer search showing that
no system V of size k can satisfy Property 1.3 and Property 1.1. This
approach was used in [DSX11] on a laptop to show in a few seconds
that v(2) > 3 and in a few hours that v(3) > 8. In other words, this
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approach verifies computationally that v(2) = p(2) = 5 and v(3) =
1(3) = 10 — using the fact that v(3) must be even, see Remark 1.4.
Instances of higher dimensions are currently under computation.

In this section we propose ways to normalize the vector system which
significantly speed up the enumeration. We also present a constraint
programming formulation of the problem.

3.1. Normalization of vector system. Recolouring and relabelling
of the points does not change the combinatorics of the point configu-
ration. This symmetry will result in many duplicates in enumeration.
In order to speed up the enumeration of vector systems for v(d) we
normalize the vector system in the following ways.

(1) First, since the vector system V is not empty, we can assume
vector (0,0,...,0) €V .

(17) If there is a covering octahedron, i.e. one that generates an odd
number of vectors for each point of the excluded colour, we can
take the excluded colour to be the final one, an octahedron of
the system to be {(0,...,0),(1,...,1)}, with the labellings of
the points of colours 1, ..., d chosen so that (i) is satisfied.

A Python routine that searches for small octahedral systems using these
normalization is available at [Xie].

3.2. Pivoting. We may also be able to take advantage of the follow-
ing pivoting structure of octahedral systems. Given a particular i-
transversal T', we can pivot from the current octahedral system €2 to
an adjacent one ' by removing all vectors containing 7" and replacing
them with vectors T'U {s} for each s € S; such that T'U {s} was not
in Q2.

If we have a transversal T" which forms vectors with more than half
the points of colour 7, then pivoting on 7" will reduce the number of
vectors in the system, although it may also break Property 1.3. We
remark that pivoting is also seen in the setting of colourful simplicial,
it corresponds to moving a point of colour 7 across a hyperplane defined
by and ‘i-transversal.

3.3. Constraint programming approach. The other computational
approach for v(d) is to exploit the fact that there is a sphere covering
octahedron for each missing colour and model the search for a valid
vector system as a constraint programming problem.

We can start with the following collection of vectors V°. Each block
of (d+1) vectors represents the simplices derived from a sphere covering
octahedron for a missing colour.
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2 .3 d+1 2 .3 d+1
(1,:5171, PR ), (2,:17172, TPy s T ) R
2 3 d+1 .
(d+ 1wy g1, T3 gpgs - ,$17d+1)7
1 3 d+1 1 3 d+1
(372,1’ Liagy, ... a3} ) (372,2’ 2,x59,. .., 095 )N
1 3 d+1 .
(Tog51,d+ 1,25 4005+, 9 00);
1 d 1 d
(xd—i—l,l’ te >$d+1,1’ 1)7 (xd+1,2> s ’xd—i—l,za 2)> tey
(z} xd d+1)
d+1,d+12 > ¥d41,d+1> :

The domain of each variable is {1,2,...,d 4+ 1}. Then we have a
constraint programming satisfaction problem: Given a value k, find
an assignment of values to the variables such that |V°| < k and the
following constraints are satisfied:

(1) i, = 1 for all 7 and 21 ; € {1,2} for all i and j > 2. These
constraints are derived from the normalization of the vector
system.

(2) {1, 25, ..., 2% 41} < 2 forall i and j because they are from
an octahedron.

(3) Constraints corresponding to Property 1.1.

If no solution is found, then v(d) # k.

4. CONCLUSIONS AND REMARKS

Octahedral systems appear to be interesting combinatorial objects.
Using the observation that colourful point configurations generate small
octahedral systems, we propose a computational approach to estab-
lishing lower bounds for colourful simplicial depth. We can ask several
other questions about octahedral systems.

We remark that the maximum cardinality octahedral system is the
set of all possible edges; if we have m (i.e. d+1) sets of cardinality m it
has size m™. As with the other configurations discussed in this paper,
it can be realized as arising from a colourful configuration of points in
R? in this case the one that places the sets Si, ... Sz close to vertices
vy, ... Ug4q Tespectively of a regular simplex containing O.

Question 4.1. Can all octahedral systems of (d + 1) sets of (d + 1)
points be obtained as the vectors of point configurations in R?, and can
all such configurations covering all points be obtained as the vectors of
configurations satisfying a core condition?

Question 4.2. How many octahedral systems and covering octahedral
systems are there for a given m? We remark that for m = 1 we have 2
systems, 1 of which is covering, and for m = 2 we have 8 and 3; if we
count only up to isomorphism these numbers are 4 and 2 respectively.
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Question 4.3. Finally, it would be interesting to explore the pivoting
structure of octahedral systems by understand its adjacency graph.
For instance, we can ask about connectedness, i.e. can we get to any
octahedral system from the empty octahedral system via a sequence of
pivots? If so, how long must that sequence be?

We conclude by mentioning that many aspects of colourful simplices
are just beginning to be explored. For instance, the combinatorial
complexity of a system of colour simplices is anaylsed in [ST10]. As far
as we know the algorithmic question of computing colourful simplicial
depth is untouched, even for d = 2 where several interesting algo-
rithms for computing the monochrome simplicial depth have been de-
veloped, see for instance [Alo06], [BRS06], [CO01], [EEM11], [GSW92]
and [KM90].
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