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Abstract

The expected value for the weighted crossing number of a randomly weighted graph
is studied. A variation of the Crossing Lemma for expectations is proved. We
focus on the case where the edge-weights are independent random variables that
are uniformly distributed on [0, 1].
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1 Introduction

The crossing number of a graph is the minimum number of internal intersec-
tions of edges in a drawing of the graph on the plane. Computing the crossing
number, even for complete graphs, is a surprisingly challenging problem and
an active area of research [RS09,Vrt10].

The notion of the weighted crossing number, when the edges have weights
and each crossing counts as the product of the corresponding weights, has been
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used in various situations, since it mimics the possibility of having many edges
in parallel. In this note we study the expected value of the weighted crossing
number of the complete graph K,, on n vertices, where the weights of edges are
independent random variables. We consider the situation where the weights
are i.i.d. variables with the uniform distribution on [0, 1]. The first non-trivial
case is K5; here we outline a strategy to compute the expected value. Then we
show that the expected crossing number of K,, retains the ©(n?) asymptotics
of the usual crossing number cr(K,,) of complete graphs. This is proved by
using a similar recurrence as used for the usual crossing number of complete
graphs and, alternatively, by proving and applying a variation of the Crossing
Lemma for expectations.

2 Preliminaries

Given a graph G = (V, E), we denote its crossing number by cr(G). This is
the minimum over all drawings of G in the Euclidean plane R? of the number
of crossings of edges in the drawing. All drawings are assumed to have simple
polygonal arcs representing the edges of the graph, and it is assumed that
each pair of edges involves at most one intersection of their representing arcs.
Here and in the remainder of the paper, we consider only internal intersections
of edges. Formally, a crossing in a drawing D is an unordered pair {e, f} of
edges whose arcs in D intersect each other internally. We let X(D) denote the
set of all crossings and set cr(D) = |X(D)|.

Given non-negative weights w : £ — R, on the edges of (G, we define the
crossing weight of a drawing D of G as:

ca(Dw)= Y wle)wf).

{e.f}eX(D)

We define the weighted crossing number of a weighted graph G as:
cr(G,w) = mDin cr(D, w). (1)

For a fixed graph, the function cr(G, ) is also called the crossing function for
G. We take the domain of cr(G, ) to be RY. We remark that cr(G,0) = 0,
cr(G,w) > 0 and cr(G, ) = 0 if and only if cr(G) = 0. The function cr(G, ) is
piecewise quadratic in w, and the chambers defined by these pieces correspond
to (groups of) optimal drawings for the contained weightings; the forms in the
chambers are neither convex nor concave. If 1 € R¥ is the constant all-1
function, then cr(G) = cr(G, 1).



The crossing function of any n-vertex graph is just a specialization of the
crossing function cr(K,,w) of the complete graph K,,, where we put weight 0
for the non-edges in the graph. In this sense the crossing functions of complete
graphs contain information about crossing numbers of all graphs. This univer-
sality property was the main goal to introduce this notion in [Moh08,Moh10)]
and to propose its study.

Note that we allow the edges to be represented by any (polygonal) line,
they need not be straight lines. The related question of rectilinear crossing
numbers is also interesting and well-studied. While rectilinear crossing number
is in some cases larger than the usual crossing number, they do not differ in the
computations performed in this paper. As in the unweighted case, minimal
drawings can be obtained without using double crossings (pairs of edges that
cross more than once).

3 Computation of the expected crossing number

We begin by considering the expected crossing number of the complete graph
K,, for some small values of n. We take the weights on the edges to be inde-
pendently identically distributed random variables, with uniform distributions
on the interval [0, 1]. Let us denote the expected value of cr(K,, w) under this
distribution as Eu(n).

For n < 4, the graph can be drawn without crossings, so Eu(n) = 0 =
cr(K,,). Forn > 5, we have 0 < Eu(n) < cr(K,). In this section we outline how
to compute Eu(5) directly from the definition of expectation. Our somewhat
cumbersome case analysis can also be viewed as determination of the piecewise
quadratic chambers for the crossing function of Ks.

We will denote the random weight assigned to the ¢th edge by X, i =
1,...,10. We note that cr(K5;) = 1 and by symmetry, for any two non-
adjacent edges, K5 can be drawn so that those two edges are the single pair
of crossing edges. Hence:

Eu(5) =E min (XiX;)] (2)

Edges i,j do not share a vertex

We abbreviate the quantity inside the expectation (which has 15 terms) as
m(X). This is a problem in order statistics. The direct way to obtain Eu(5)

is to evaluate: Lo )
/ / . / m(x)dz; ...dzedx (3)
o Jo 0

where m(x) is the function of x € R!Y corresponding to the random variables



of m(X). To do this we break (3) into 10! terms based on the increasing order
of the variables, i.e. we compute (3) via the sum:

1 rxo010)  [To(9) To(2)
Z / / / ce / m(x)dxg(l) ce d$g(9)dl‘g(10) (4)
0 0 0 0

c€S10

Here the permutations o € S1g index the possible orderings of the random vari-
ables X. This sum has 10! terms, but they can be grouped into a manageable
number of cases. The proof proceeds by dividing cases based on the relative
orderings of some of the remaining variables. The computed expectation is

S22, The details of the calculation are available in [MS10].

As noted in Section 4.1, the computed value of Eu(5) is used in a lower
bound for Eu(n) for n > 5.

4 Asymptotics

Some standard arguments used for crossing number estimates work also for
the expectations. In this section we show that simple adaptations of these
arguments show that Eu(n) is ©(n?). Since cr(K,) is O(n?) and an upper
bound for Eu(n), we need only show the lower bound. We remark that the
asymptotic upper bound cr(K,) can be obtained trivially from the fact that
there are only O(n*) pairs of edges in K,,, but that much better constructive

upper bounds exist and are an ongoing research challenge, see for instance
[AAKO06,PRO7].

4.1  Asymptotics via a recurrence

We recall that we denote the crossing weight of a given drawing D of a graph
weighted by w as cr(D,w), and the weighted crossing number of G weighted
by w (i.e. the minimum over all drawings) by cr(G, w).

Given a drawing D of K,, with weights w, we can consider the induced

drawings of copies of K, —v =~ K,,_; obtained by removing each vertex v €
V =V(K,) from K,, in turn. Then

Z cr(Dlk, —v, WK, —») = (n —4) cr(D, w) (5)

veV

since each pair of disjoint edges ij,4'j" of K,, appear in all but four of the terms
on the left side of (5).



Now consider K,, for n > 4 with a fixed weighting w. There is some optimal
drawing D* of K,, such that cr(K,,, w) = cr(D*,w). Now:

1
cr(K,, w) = cr(D*,w) = — Zcr(D*h{n o, WK, —v)
n veV
1 1
> — vezvmpincr(l)h(n o WK, o) = — vezvcr(Kn —v, wlk, —v)-

If the weights in w are i.i.d. random variables, we can take expectations on
both sides to get Eu(n) > - Eu(n—1). Applying this inequality recursively,
we find for n > 6 that Eu(n) > 1 (%) Eu(5).

4.2 Asymptotics via the Crossing Lemma

The version given below of the Crossing Lemma (with the specific constant
1024/31827 > 0.032) is due to Pach et al. [PRTTO6]; this result improves the
constant as compared to previous versions.

~ 103
Theorem 4.1 Let G be a graph of order n with m > S2n edges. Then

1024 m?
(@) 2 31597 w2
Let 7 be a probability distribution with expectation E(7) = u. We define
the complementary probability distribution 7* by setting 7*(u+z) = 7(u— ).
For the purpose of the following argument, let us assume that our probability
distribution is symmetric, i.e., # = ©*. Then, given a random weight function
w, the complementary weight function w*, defined as w*(e) = 2u — w(e), has
the same distribution as w. Let us define w’ to be either w or w*, so that
w'(e) > p holds for at least half of the edges e € E(G). Finally, let w;
be defined as wi(e) = 0 if w'(e) < w, and wy(e) = 1 if w'(e) > p. Since
cr(G,w) + er(G,w*) > cr(G,w') > p? cr(G,wy), the following holds:

E(cr(G,w)) =1 E(er(G, w) + cr(G,w*)) > 1 E(er(G, w'))

w? p? 1024 (m/2)®  64p® m3
2y BlalGw) 2 5 3150 e 3isr w2
This gives a version of the Crossing Lemma for expectations. With a little
more care we can improve the above bound and also get rid of the symmetry
condition. In order to do this, we replace the mean by the median, i.e. the
largest number v such that Problw(e) > v] > 1.




Theorem 4.2 Let G be a graph of order n with m > ﬁ n edges. Sup-
pose that each edge e € E(G) gets a random weight w(e), where the weights of
distinct edges are independent non-negative random variables (not necessarily

i.d.) whose median is at least v > 0. Then

12802 m?
E(cr(G,w)) > [
(G w) 2 37557 72

The proof is included in [MS10].
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