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Abstract. We show that any point in the convex hull of each of (d + 1) sets of (d + 1)
points in general position in Rd is contained in at least d(d + 1)2/2e simplices with one
vertex from each set. This improves the known lower bounds for all d ≥ 4.

1. Introduction

A point p ∈ Rd has simplicial depth k relative to a set S if it is contained in k closed
simplices generated by (d + 1) sets of S. This was introduced by Liu [Liu90] as a statis-
tical measure of how representative p is of S, and is a source of challenging problems in
computational geometry – see for instance [FR05]. More generally, we consider colourful
simplicial depth, where the single set S is replaced by (d+1) sets, or colours, S1, . . . ,Sd+1,
and the colourful simplices containing p are generated by taking one point from each set.

Assuming that the convex hulls of the Si’s contain p in their interior, Bárány’s Colourful
Carathéodory Theorem [Bár82] shows that p must be contained in some colourful simplex.
We are interested in determining the minimum number of colourful simplices that can
contain p for sets satisfying these conditions. That is, we would like to determine µ(d),
the minimum number of colourful simplices drawn from S1, . . . ,Sd+1 that contain p ∈ Rd

given that p ∈ int(conv(Si)) for each i. Without loss of generality, we assume that the
points in

⋃
i Si ∪ {p} are in general position. Besides intrinsic appeal, µ(d) represents

the minimum number of solutions to the colourful linear programming feasibility problem
proposed in [BO97] and discussed in [DHST06].

The quantity µ(d) was investigated in [DHST06], where it is shown that 2d ≤ µ(d) ≤
d2 + 1, that µ(d) is even for odd d, and that µ(2) = 5. This paper also conjectures that
µ(d) = d2 + 1 for all d ≥ 1. Subsequently, [BM07] verified the conjecture for d = 3 and

provided a lower bound of µ(d) ≥ max(3d,
⌈

d(d+1)
5

⌉
) for d ≥ 3, while [ST08] independently

provided a lower bound of µ(d) ≥
⌊

(d+2)2

4

⌋
. In this note we show:

Theorem 1: For d ≥ 1, we have µ(d) ≥ d (d+1)2

2
e.

This strengthens the previously known lower bound for all d ≥ 4.

2. Preliminaries

Without loss of generality we can take p = 0. The sets S1, . . . ,Sd+1 must each contain
at least (d + 1) points for 0 to be in the interior of their convex hulls, and since we are
minimizing we can assume they contain no additional points, i.e. that |Si| = d + 1 for
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each i. We assume that all points are distinct, so no point occurs in two Si’s, and 0 is not
in any Si. We can scale the points of the Si’s so that they lie on the unit sphere Sd−1: 0
is in a simplex after scaling if and only if it was in the simplex before scaling.

We call a set of points drawn from the Si’s colourful if it contains at most one point
from each Si. We call a colourful set of d points which misses Si an î-transversal. Note
that î-transversals generate full dimensional pointed colourful cones; we will say that a
transversal spans a point if the point is contained in the associated cone. A key observation
is that colourful simplices containing 0 are generated whenever the antipode of a point of
colour i is spanned by an î-transversal.

In particular, we look at the combinatorial octahedra, or cross polytopes, generated by
pairs of disjoint î-transversals. We rely on the topological fact that every octahedron Ω
either covers all of Sd−1 with colourful cones, or, every point x ∈ Sd−1 that is covered by
colourful cones from Ω is covered by at least two distinct such cones. In the case where
the points of Ω form an octahedron in the geometric sense, these correspond to the cases
where 0 is inside and outside Ω respectively. For a proof, see for example the Octahedron
Lemma of [BM07]. We remark that a given octahedron contains 2d transversals, though
we specify only two disjoint ones to generate it.

Our strategy for finding distinct colourful simplices is to begin with a transversal that
generates at least one colourful simplex, and get further points from octahedra that include
this transversal. We will break into cases based on the number of colourful simplices
generated by the initial transversal and how many of the octahedra cover Sd−1.

3. Proof of the Theorem 1

We know that at least one colourful simplex contains 0. Therefore we have an antipode

of colour (d + 1) lying in the cone generated by a d̂+ 1-transversal T . Without loss of
generality we can number the points of S1,S2, . . . ,Sd so that point (d+1) of Si is included
in T . The remaining points of the Si’s can be numbered arbitrarily. Let Ti be the set that

contains the points numbered i from S1,S2, . . .Sd+1. Then each Ti is a d̂+ 1-transversal
and Td+1 = T . Further, the sets T1, T2, . . . , Td+1 are pairwise disjoint. Let L be the set of
antipodes of colour (d+ 1) spanned by Td+1, where |L| = l > 0.

3.1. Points from d octahedra that share a transversal. Now consider the d octa-
hedra Ω1,Ω2, . . . ,Ωd given by pairing Ti with Td+1 for i = 1, 2, . . . , d. Except for the

common transversal Td+1, every d̂+ 1-transversal found among the Ωi’s is distinct. For
each i, Ωi may or may not cover all of Sd−1. Suppose that b of the octahedra cover Sd−1.
There are (d+ 1− l) antipodes of colour (d+ 1) that are not spanned by Td+1, and hence
must be spanned by a different transversal from each of these octahedra. This gives us
a total of b(d + 1 − l) distinct simplices containing 0. Now there remain (d − b) octa-
hedra that do not span all of Sd−1. By the Octahedron Lemma, each of the l antipodes
spanned by Td+1 must also be spanned by a second transversal from the octahedron gen-
erated by Td+1 and Ti. So we find an additional (d − b)l distinct simplices along with
the l simplices generated by the antipodes with Td+1 itself. This brings us to a total of:
l + b(d + 1− l) + (d− b)l = (d + 1)(b + l)− 2bl distinct colourful simplices containing 0
through this simple argument.
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3.2. Choice of Td+1. In the above argument, Td+1 can be any d̂+ 1-transversal containing
an antipode of colour (d+ 1). In the construction of previous lower bounds, it was noted
that if depth(0) is low, then there must be a portion of Sd lightly covered by colourful

cones. That is to say, if each antipode of colour (d + 1) is spanned by at least j d̂+ 1-
transversals, then depth(0) ≥ j(d + 1). We can take Td+1 to be a transversal spanning
the least covered antipode. As we move through the possible values of i in the argument
of Subsection 3.1, whenever the octahedron fails to cover Sd−1 we will see a new cone
covering the lightly covered antipode. Hence (j−1)+b ≥ d. We thus have that depth(0)
is at least max[j(d+ 1), (d+ 1)(b+ l)− 2bl] with j ≥ 1, 1 ≤ b, l ≤ d, and j + b ≥ d+ 1.

As long as l ≤ d+1
2

, this gives the desired result: by taking either j ≥ d+1
2

or b ≥ d+2
2

we get depth(0) ≥ d2+2d+1
2

.

3.3. Single transversals spanning many antipodes. This leaves only the case where
l ≥ d+2

2
. In this situation, we begin with l simplices containing 0 differing only in the

(d+ 1)st colour. We can repeat this exercise for each colour, in which case we will either
find that for each colour i, li ≥ d+2

2
, or, for some colour i, li ≤ d+1

2
. In the latter case, we

apply the analysis above to get at least d2+2d+1
2

distinct simplices containing zero.

If it happens that we get li ≥ d+2
2

for each i, then for each i we have a set Li of at least

li antipodes of colour i which lie on a single î-transversal Ui. These generate (d+ 1) sets
X1, X2, . . . Xd+1 of at least l = mini(li) ≥ d+2

2
colourful simplices. There may be some

duplication between sets, but we note that the simplices within each set are distinct and
differ only in the ith colour.

We can identify the simplices that make up the Xi’s with vectors in {1, 2, . . . , d+1}d+1.
We find it helpful to consider them as vectors in Rd+1 unrelated to the initial configuration.

A simplex αd belonging to a given Xi is represented by a vector in Rd+1 in the following
way. The axes correspond to the d+ 1 colours, and the qth coordinate is set to the index
in Sq of the point of colour q of αd. We recall that the index of points in Sq is set by the
arbitrary numbering of points of colour q proposed at the beginning of Section 3.

The vectors associated to the simplices from a given Xi lie on a line segment in the ith
coordinate direction. If a simplex is in both Xi and Xq, then the associated vector must
lie at the intersection of the corresponding line segments.

Lemma: There are at most d duplicate vectors in the union of the Xi’s, where a vector
that is in k + 1 sets is counted as k duplicate vectors.

Proof: Consider adding the sets iteratively. We will say that two sets are in the same
component if they contain a common point, and extend this to an equivalence relation. We
remark that each component is contained in the topological component formed by taking
the union of the line segments associated to the Xi’s, but a given topological component
will contain multiple components if the points of intersection of the line segments are not
included in the corresponding Xi’s.

We begin with c = 0 components and k = 0 duplicate vectors. Each added set either
creates a new component or intersects r components, producing r duplicate vectors while
reducing the number of components by (r−1) through the equivalence relation. Therefore
at each step c + k increases by 1. Upon termination, we will have at least 1 component,
and hence at most d duplicate vectors. �
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Then the Xi’s contain distinct simplices except possibly for up to d+ 1− c ≤ d repeats
arising in this construction, where c is the number of components. This gives us a total
of (d+ 1)l − (d+ 1− c) = (d+ 1)(l − 1) + c distinct simplices containing 0.

However, if c is small, we can readily find additional distinct simplices containing 0 by
observing that for a fixed colour i, for instance one attaining l = li, we also have (d+1− l)
antipodes outside of Li. Each of these antipodes must generate some colourful simplex
containing 0. In fact, for each antipode omitted, we could get d+1

2
simplices since either

li or b is this large, but it does not improve our worst case. Call this set of simplices M ,
and again consider them as vectors in Rd+1. They are not included among the vectors
associated to simplices in Xi, since they have different values of coordinate i.

The vectors associated to simplices in M could duplicate vectors from components other
than the one containing Xi. However, each such component has a fixed value of colour i.
If c−1 ≥ d+1− l it may be the case that all such simplices are repeats, but our guarantee
is (d+ 1)(l − 1) + c ≥ dl + 1. If c− 1 < d+ 1− l we get at least d+ 2− l − c additional
distinct simplices from vertices omitted from the (d + 1) sets. This again guarantees us
at least (d+ 1)(l − 1) + c+ (d+ 2− l − c) = dl + 1 distinct simplices.

Now as l ≥ d+2
2

we get at least dd+2
2

+1 = d2+2d+2
2

distinct simplices containing 0. Thus

our overall worst case for this analysis is at d2+2d+1
2

= (d+1)2

2
, which can be rounded up to

an integer when d is even. This improves the known bounds for d ≥ 4, in particular from
12 to 13 when d = 4. We remark that unlike previous general approaches, this analysis
gives the tight bound of 5 when d = 2.

4. A Combinatorial Generalization

The methods in Section 3 rely on the combinatorial structure of the vectors representing
the simplices. Indeed, there is a nice generalization of the colourful simplicial depth
problem to systems of vectors of in {1, 2, . . . , d+ 1}d+1.

Given sets S1, . . . ,Sd+1 as in Section 1, we form the system of vectors V where v =
(s1, . . . , sd+1) is in V exactly if the colourful simplex described by v contains 0. In this

context, î-transversals are simply vectors with the ith coordinate removed, and octahedra
are pairs of disjoint î-transversals. The system V has the following two properties:

1. Every element of {1, 2, . . . , d + 1}d+1 is in some v ∈ V . This is the combinatorial
requirement from Bárány’s Colourful Carathéodory Theorem.

2. For any octahedron O, the parity of the set of vectors using points from O and
a fixed point si for the ith coordinate is the same for all choices of si. For a system V
arising from colourful simplices, the parity is odd when the octahedron O contains 0, and
even when it does not. This is a purely combinatorial version of the Octahedron Lemma
mentioned in Section 2.

Question 4.1. For a given d ≥ 2, what is the size ν(d) of a minimal system V of vectors
in {1, 2, . . . , d+ 1}d+1 satisfying properties 1 and 2?

The system corresponding to the conjectured minimal core colourful Carathéodory
configuration from [DHST06] satisfies properties 1 and 2 with d2 + 1 vectors, so ν(d) ≤
µ(d) ≤ d2 + 1. Clearly ν(d) ≥ d + 1. An exhaustive computer search on a laptop shows
in a few seconds that ν(2) > 4 and in a few hours that ν(3) > 8. In other words, this
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approach computationally verifies that µ(2) = 5 and µ(3) = 10 (using the fact that µ(3)
must be even).

5. A Generalized Core

As a final remark, we mention the recent generalization of the Colourful Carathéodory
Theorem in [HPT08] and [ABB+09], in which the condition of 0 being in the convex hull
of each Si is relaxed to require 0 to only be in the convex hull of Si ∪ Sj for each i 6= j.
It is natural to ask whether the minimum number of colourful simplices containing 0 is
lower for configurations satisfying these weaker conditions. Call the analogous quantity
µ3(d).

In fact, the construction of [DHST06] can be modified in this to produce configurations
showing that µ3(d) ≤ d + 1 by fixing the points of colours 1, 2, . . . , d in the same way
and then clustering all antipodes of the final colour in region that is covered by only
a single colourful cone from the first d colours. In this case the relaxed conditions are
satisfied almost trivially since 0 is in conv(Si) for i = 1, 2, . . . , d. We note that in this
configuration, each colour from 1, . . . , d has a unique point which is a generator for all
(d+ 1) colourful simplices colourful simplices containing 0. In other words, in contrast to
the situation when 0 is in all the Si’s, some (in fact, most) points from the Si generate
no colourful simplices containing 0.

The following simple argument shows that µ3(2) = 3. Using the assumptions of Sec-
tion 2, we place the points of the first two colours on the unit circle around 0. The
condition 0 ∈ conv(S1 ∪ S2) then means that every half-circle contains a point from
S1 ∪ S2. If the circle is covered by colourful cones, then each antipode of the remaining
colour generates a colourful simplex containing 0 and we are done. Otherwise, some seg-
ment of the circle is not covered by any colourful cone. This segment must be bounded
by two points p and p′ of the same Si, say S1. The three points of S2 then are on the
longer arc between these points, and for each point of S2, every point on the longer arc
is covered by a colourful cone using that point and either p or p′. The condition that
0 ∈ conv(S2 ∪ S3) forces at least one of the antipodes of S3 to lie in the arc that spans
the three points of S2.

Finally, we remark that we can generalize µ3(d) combinatorially to ν3(d) analogously to
Section 4. Combinatorial Property 2 must still hold for such configurations, but Property
1 fails in the constructions above. Nevertheless, we can quickly verify computationally
that ν3(3) = µ3(3) = 4.
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