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Abstract. The colourful simplicial depth (CSD) of a point x ∈ R2 relative to a configura-
tion P = (P 1, P 2, . . . , P k) of n points in k colour classes is the number of closed simplices
(triangles) with vertices from three different colour classes that contain x in their convex
hull. We consider the problems of efficiently computing the colourful simplicial depth of
a given point x, and of finding a point in R2, called a median, that maximizes colourful
simplicial depth.

Our algorithm for colourful simplicial depth runs in O(n log n) time, and in O(n) time if
the points are already sorted around x. This is optimal for sorted inputs. Our algorithm
for computing the colourful median runs in O(n4) time. Both results extend known algo-
rithms for the monochromatic versions of these problems, and match the corresponding time
complexities.

1. Introduction3

The simplicial depth of a point x ∈ R2 relative to a set P of n input points is the number4

of simplices (triangles) formed with the points from P that contain x in their convex hull.5

A simplicial median of the set P is any point in R2 which is contained in the most triangles6

formed by elements of P , i.e., has maximum simplicial depth with respect to P . Here we7

consider a set P that consists of k colour classes P 1, . . . , P k. The colourful simplicial depth8

(CSD) of x with respect to configuration P is the number of triangles with vertices from9

three different colour classes that contain x. A colourful simplicial median of a configuration10

P = (P 1, P 2, . . . , P k) is any point in the plane with maximum colourful simplicial depth.11

Trivially this point must be in the convex hull of P .12

Monochrome simplicial depth was introduced by Liu [Liu90]. Up to a constant, it can be13

interpreted as the probability that x is in the convex hull of a random simplex generated by P .14

The colourful version generalizes this to selecting points from k distributions, see [DHST06].15

In this setting, medians are central points which are in some sense most representative of16

the distribution(s). Our objective is to find efficient algorithms for finding both the colourful17

simplicial depth of a given point x with respect to a configuration, and a colourful simplicial18

median of a configuration.19

1.1. Background. Both monochrome and colourful simplicial depth are well defined in all20

dimensions, and are natural objects of study in discrete geometry. For more background on21

simplicial depth and competing measures of data depth, see [Alo06] and [FR05]. Monochrome22

depth has seen a flurry of activity in the past few years, most notably relating to the First23

Selection Lemma, which is a lower bound for the depth of the median, see e.g. [MW14].24

The colourful setting for simplicial depth is suggested by Bárány’s approach [Bár82] to25

proving a colourful version of Carathéodory’s theorem. Deza et al. [DHST06] formalized the26

notion and considered bounds for the colourful depth of points in the intersection of the27

convex hulls of the colours. Among the recent work on colourful depth are proofs of the28
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lower [Sar15] and upper [ABP+17] bounds conjectured by Deza et al., with the latter result29

showing beautiful connections to Minkowski sums of polytopes.30

The colourful simplicial depth represents the number of basic solutions to a colourful linear31

programming problem, see [BO97, DHST08]. Applications of colourful linear programming32

include computing Nash equilibria in a bimatrix game [MS18a].33

Monochrome simplicial depth can be computed trivially by enumerating simplices, in34

O(nd+1) time for dimension d. Afshani, Sheehy and Stein [ASS16] produced the first non-35

trivial algorithm for d > 4, running in O(nd log n) time. They also provided a range of36

approximation algorithms for all dimensions. Until recently, the best known time bounds37

for 3D and 4D were O(n2) and O(n4) respectively, by Cheng and Ouyang [CO01]. All exact38

computation bounds for d > 3 were matched or improved by Pilz, Welzl and Wettstein,39

whose algorithm runs in O(nd−1) time [PWW17].40

The two-dimensional case was considered by several authors in the 90’s. Algorithms for41

monochrome depth running in O(n log n) time were given by Khuller and Mitchell [KM90],42

Gil, Steiger and Wigderson [GSW92] and Rousseeuw and Ruts [RR96]. In each case, the43

bottleneck was a radial sort around the query point, without which the time would be44

linear. A worst-case time lower bound of Ω(n log n) was given in [ACG+02]. Elmasry and45

Elbassioni provided an output-sensitive algorithm that computes the simplicial depth of a46

point in O(n + n log(1 + t/n)) time, if the depth of the point happens to be t [EE05]. For47

more about enumerating the simplices that contain a given point, see [EEM11].48

As for the simplicial median, Khuller and Mitchell [KM90], and Gil, Steiger, and Wigder-49

son [GSW92] studied an in-sample version of the problem, by computing a point from P50

with maximum simplicial depth. In fact they computed the depth of all input points in51

quadratic time, by obtaining the required sorted ordering for all n points within that time52

bound and then applying the standard depth algorithm n times. However, we consider a53

simplicial median to be any point x ∈ R2 maximizing the simplicial depth. Rousseeuw and54

Ruts [RR96] provided an algorithm to compute the simplicial median in O(n5 log n) time.55

Aloupis et al. [ALST03] improved the time complexity to O(n4). We conjecture that this is56

optimal, and observe (in Lemma 3.1, Section 3.3) that there are O(n4) candidate points for57

the location of the colourful median as well.58

1.2. Organization and Main Results. In Section 2, we show how the classic monochro-59

matic simplicial depth algorithm can be extended to colourful input, resulting in a time60

complexity of O(k + n log n), in the real RAM model. Again, sorting is the bottleneck, so if61

the input is already sorted about the query point, x, the time complexity drops to O(k+n).62

Given that k ≤ n, the complexities are respectively O(n log n) and O(n). The algorithm is63

optimal up to a constant factor as in the monochromatic case. Formally, the main result64

presented at the end of Section 2 is:65

Theorem. Given a set P ⊂ R2 of n input points in k different colours, (3 ≤ k ≤ n), and66

a point x, with P ∪ {x} in general position, the colourful simplicial depth of x relative to P67

can be found in O(n log n) time. If the points in P are already sorted around x, the depth of68

x can be computed in O(n) time.69

70

Note that we are using general position to mean that no three points are colinear.71
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In Section 3, we turn our attention to computing a colourful simplicial median. We72

extend the monochromatic algorithm of [ALST03] and preserve its time complexity of O(n4),73

independent of k. Formally, the main result presented at the end of Section 3 is:74

Theorem. Given a set of input points P ⊂ R2 in general position in k different colours,75

k ≥ 3, the colourful simplicial median of P can be found using O(n4) time and O(n2) space,76

where |P | = n.77

Section 4 contains conclusions and discussion about future directions.78

2. Computing Colourful Simplicial Depth79

2.1. Preliminaries. We consider a point x ∈ R2 and family of sets P 1, P 2, . . . , P k ⊆ R2,80

k ≥ 3, where each P i consists of the points of some particular colour i. Refer to the jth81

element of P i as P i
j . We generally use superscripts for colour classes, while subscripts indicate82

the position in the array. We denote the union of all colour sets by P : P =
k⋃

i=1

P i. The total83

number of points is n, where |P i| = ni, and
k∑

i=1

ni = n. Clearly, if each set is non-empty,84

k ≤ n; and it would be trivial to identify and eliminate empty colour sets in linear time. To85

avoid technicalities, we assume that points of P
⋃
{x} are in general position, and only two86

edges formed by pairs of input points cross at any given position. Such degeneracy issues87

can be taken care of with some special handling without changing the asymptotic running88

time, see [EM88]. Note that we use the word edge to refer to the line segment formed by89

two input points.90

Definition 2.1. The line segment formed by two points of P is called an edge. The proper91

intersection of two edges is a vertex. An edge is colourful if its two endpoints, a, b, have92

different colours, i.e., belong to distinct sets P a, P b, where a 6= b.93

Definition 2.2. A colourful triangle is the convex hull of three points from P that define94

three colourful edges. In other words the points have three distinct colours. At times when95

the context is clear we may refer to the generating points as triangles.96

Definition 2.3. The colourful simplicial depth D(x, P ) of a point x relative to P is the97

number of colourful triangles, formed by elements of P , containing x. (See Figure 1)98

x

Figure 1. A configuration P of 8 points in R2 surrounding a point x with
D(x, P ) = 6.
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Remark 2.4. We are checking containment in closed triangles. With our general position99

assumption, this will not affect the value of D(x, P ). We find it more natural to consider100

closed triangles than open triangles in defining colourful medians. Arguments in this paper101

can be adapted to the open triangle context.102

2.2. Monochrome Depth Algorithm and an Extension to Colourful Depth. We103

begin by briefly recalling how to compute the monochromatic simplicial depth of a point x,104

as we will be relying on this for our result. See [ACG+02] for details. The depth of x can105

be determined trivially by counting the triangles formed by P that do not contain x, so we106

will focus on that task. Let r− be the ray from x passing through an arbitrary point v in107

P . Let H be the open halfplane to the left of this ray, and let r+ be the ray from x pointed108

in the opposite direction of r−. Any two points (b, c) in H, taken together with v, form a109

triangle that does not contain x. Thus we can use v as an anchor, to which we will charge110

a subset of all the triangles not containing x. The size of this subset is
(
h
2

)
, where h is the111

number of points in H (trivially, the size is zero if h < 2). The algorithm computes h by112

brute force, and then rotates the two rays counterclockwise, pausing every time a ray hits113

an input point, until r− reaches v again. If a pause is triggered by r+, h is incremented.114

Otherwise, r− reaches a new anchor, so h is decremented and the updated value of
(
h
2

)
is115

added to a global count (being charged to the new anchor). Thus every stop costs constant116

time. The bottleneck is the angular sort of all input points about x which allows the rays117

to perform their sweep. Finally, we note that there is no double-counting: for example, it is118

easy to see that when b or c becomes the anchor, v will not be in the updated halfplane, H.119

Thus the triangle v, b, c can be charged uniquely to its anchor, v.120

The algorithm above can be extended to compute the colourful simplicial depth of x, in121

O(n log n+ kn) time. The objective is to count all colourful triangles that do not contain x.122

Again, a line through x is rotated, stopping at every input point to increment or decrement123

the number of points in a halfplane, and whenever a new anchor point is reached, a sum is124

computed (now in O(k) time) and added to a global sum.125

Specifically, we now maintain the number of points, hi, of colour i in H, for every colour126

class P i. All together, the hi terms are initialized in linear time. Then of course h =
∑
hi.127

As before, we start off by calculating the number of colourful triangles, anchored at v, that128

do not contain x. Without loss of generality, suppose that v belongs to P 1. Clearly we must129

ignore all points in H within this colour class. Consider how to compute all desired triangles130

that involve a point q of colour P 2. This is equal to the count of all points in H that do131

not belong to P 1 or P 2. Let this be denoted by h1,2. Trivially, h1,2 = h − h1 − h2 can be132

computed in constant time. Thus the number of triangles in H (anchored at v) that avoid133

x, and contain a non-anchor point of colour P 2 is h2 · h1,2. Similarly for any colour class Pj,134

such that j 6= 1, the number of triangles anchored at v that avoid x is hj · h1,j. The sum of135

all these terms, over all j 6= 1, equals the number of colourful triangles anchored at v that136

avoid x, except that we have double-counted each triangle. This sum for v has k−1 terms137

(even if we factor in a term for colour classes missing in H) and is therefore computed in138

O(k) time.139

After the sum for v has been computed, we rotate the rays counterclockwise. We then140

increment hi (and h) for any point that enters H as we rotate, until r− hits a new anchor.141

After decrementing the anchor’s colour count in H, we are ready to compute a new sum.142

All the ingredients are ready, namely h and all the hi, so the sum for the new anchor can143
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be computed in O(k) time. Thus for all n anchors, the total time is O(kn), after the initial144

sorting step.145

Note that a similar algorithm with the above time complexity appeared in a preliminary146

version of this work [ZS16], and has been implemented [Zas16]. The present algorithm is147

conceptually simpler, but either way in the following section we show how to avoid spending148

linear time (in terms of k) to compute the sum for each anchor. Instead, we spend only149

constant time per anchor.150

2.3. Colourful Depth in O(n log n) time. The problem with the preceding approach is151

that we explicitly used all k terms hi (1 ≤ i ≤ k), for every anchor’s sum. To fix this, we will152

still maintain all hi, by updating one such term per step, but we will also maintain a more153

useful count that can be updated in constant time per step, and that will allow the sum at154

each anchor to be computed in constant time as well.155

Consider any anchor, v, using the general framework described in the preceding section.156

Suppose that v belongs to P 1. Counting the triangles anchored at v that avoid x is equivalent157

to knowing the number of bichromatic pairs of points in H, that do not involve points in P 1.158

This number can be obtained in constant time if we know the total number of bichromatic159

pairs in H, and the number of bichromatic pairs that involve precisely one point from P 1,160

so that the latter can be subtracted from the former.161

Denote the total number of bichromatic pairs in H by w. This can be obtained from h162

and the hi’s in linear time in k: for every colour, i, compute hi · (h− hi), then compute the163

sum of these products over all i. Finally divide by two to take care of double-counting. We164

perform this initialization when we select our first anchor, v, that belongs to some arbitrary165

colour class, say P 1. The number of triangles that we need to count for v is w − h1 · (h−h1).166

Whenever we rotate, updating w is simple. For instance, suppose that a point y, belonging167

to P c, is about to enter H. How many new bichromatic pairs will there be, after including168

y in H? Precisely h − hc. Thus we add this amount to w, and then we increment h and169

hc. When a point exits H we subtract from w and decrement accordingly. Of course, in170

this case we are dealing with a new anchor, so after updating w we compute the sum w −171

hc · (h− hc) for the new anchor.172

In conclusion, there are 2n steps after initialization; at each step we increment or decrement173

h and one hi term, and we update w in constant time. Also for each of the n anchors we174

compute the number of triangles that get charged to the anchor, in constant time, and add175

this number to a global sum. After sorting, the total time complexity of the algorithm is176

Θ(n).177

Theorem 2.5. Given a set P ⊂ R2 of n input points in k different colours, (3 ≤ k ≤ n),178

and a point x, with P ∪{x} in general position, the colourful simplicial depth of x relative to179

P can be found in O(n log n) time. If the points in P are already sorted around x, the depth180

of x can be computed in O(n) time.181

182

3. Computing Colourful Simplicial Medians183

3.1. Overview of Monochromatic Simplicial Median Computation. A brute-force184

algorithm to find a monochromatic simplicial median takes O(n5 log n) time by computing185

the depth of every intersection point formed by edges between input points. In other words,186

the depth is computed at all crossings in the complete geometric graph defined on the187
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input. The crossing number lemma [ACNS82, Lei83] gives that there are Θ(n4) such points188

independent of the positions of the vertices. The justification for only considering intersection189

points is simple, but for completeness we prove this statement in Lemma 3.1. A speedup190

can be obtained by iteratively dealing with each edge, processing all the incident intersection191

points in order. In general, as we walk on an edge (a, b), the depth changes only when there192

is an intersection with some other edge. Suppose that we are at the position t on (a, b) where193

edge (c, d) crosses, and {a, b, c, d} are distinct points. Given our general position assumption,194

(c, d) is the base of n−2 triangles that contain t. It also defines two open halfplanes. As195

we step away from t along (a, b) into one of the two halfplanes, we exit a certain number196

of the triangles just mentioned; one for each input point in the other halfplane. Therefore197

by precomputing the number of points in the halfplanes defined by each of the edges, the198

depth along (a, b) can be updated in constant time. As we keep walking, if we encounter199

another crossing edge (e, f), the situation is symmetric: we enter the set of triangles with200

base (e, f) and apex in a halfplane defined by (e, f). The preprocessing step of counting201

points in halfplanes takes O(n) time per edge, so O(n3) time overall.202

To walk on (a, b), we do not begin at one of its endpoints; we begin at a vertex if one203

exists, so that the conditions mentioned in the preceding paragraph will hold. In fact we204

begin at an intersection closest to an endpoint (call such an intersection special). Therefore205

in preprocessing we compute the depth of the special intersection(s) on each edge, which206

can be found by brute force in quadratic time per edge. The total time of this preprocessing207

step is thus O(n4).208

As mentioned, to walk on one edge, we need all the intersection points in sorted order.209

There is the option of sorting all these points in O(n2 log n) time and quadratic space. Thus,210

iterating on the set of edges, the time complexity is O(n4 log n), still using quadratic space.211

However, as mentioned in [ALST03], by using a topological sweep [EG89] on the graph, the212

time complexity can be reduced by a log factor to O(n4). As a reminder, the effect of a213

topological sweep is to scan through the graph with a curve, so that the intersections on214

each edge are swept in correct order. When the sweep passes through a input point or a215

special intersection, we simply look up its depth. Otherwise we update depth as described216

above in constant time.217

3.2. Extension to Colourful Simplicial Median Computation. In the colourful set-218

ting, the underlying structure is the same, except that monochromatic edges can be ignored.219

In other words, to find a median it suffices to consider the depth only at the input points220

and at vertices where colourful edges intersect. The reason for this is identical to the anal-221

ogous monochromatic case. As a result, the graph in question is now a complete geometric222

k-partite graph, G. Note that there are many examples of such graphs that contain Ω(n4)223

candidates for the location of a median, see for example [GHL+16] for an analysis of the224

balanced case.225

Unlike before, now we only walk on colourful edges. While walking on (a, b), if a colourful226

edge (c, d) is crossed we need to know the number of points in the open halfplanes that it227

defines, involving only colours other than c or d. Analogous to the monochromatic case, this228

is because any such point forms a colourful triangle with base (c, d), that we either enter or229

exit at this particular intersection. For example, in Figure 2, when walking on (y1, b2), as230

soon as we step onto c3 coming from b2, we enter two triangles with base (g1, r2): one with231

apex b1 and the other with apex y1. So as preprocessing for each colourful edge we store232
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the corresponding number of points in each of its two halfplanes. Brute-force suffices, taking233

O(n) time per edge, and O(n3) time overall, as in the monochromatic case.234

The definition of a special intersection holds as before. See Figure 2. Also as before, we can235

process each colourful edge iteratively, after pre-sorting all its intersections in G. In other236

words we can update the depth in constant time per intersection, beginning at a special237

intersection if one exists. The depth of each input point is computed as well. Finally, with238

a topological sort on G the time complexity becomes O(n4).239

Some of the steps for monochromatic or colourful median computation can be optimized,240

however no known improvement exists for the asymptotic time complexity. For completeness,241

in the following section we outline certain details and include pseudocode.242

g2
b1r1

g1

y1

b2

y2

r2

c1

c2

c3

Figure 2. Examples of special points: c1 and c2 are special on edge (b1, r2).
c2 is also special on (y1, b2), along with c3. The middle intersection on (y1, b2)
is not special with respect to this edge, but it is with respect to (r2, g2). Some
edges like (r1, g2) have no (special) intersection.

3.3. Details and notes on implementation. We define P, P i, ni, and D(x, P ) as in sec-243

tion 2.1. Our objective is to find a point x in the plane, maximizing D(x, P ). Trivially, x244

will be inside the convex hull of P , denoted conv(P ). The depth of x is defined as µ̂(P ). For245

an example, see Figure 3. Let S be the set of edges formed by all possible pairs of points246

(a, b), where a ∈ P i, b ∈ P j, i < j. These are the colourful edges mentioned in the preceding247

section. The intersection points of colourful edges will be referred to as vertices.248

The following lemma for the colourful setting follows the same reasoning as the monochro-249

matic setting (e.g., see [ALST03]).250

Lemma 3.1. To find a point with maximum colourful simplicial depth it suffices to consider251

the intersection points of the colourful edges in S (including the input points themselves).252

Proof. The colourful edges of S partition the union of all colourful triangles into polygonal253

cells. Unlike the monochromatic case, here some cells may not be convex (see cell r3, b1, r2, i254

in Figure 3), and some points of conv(P ) may fall outside any cell (see Figure 2). Within the255

interior of any cell, the colourful simplicial depth remains constant. Consider any cell, C,256

such as the one bounded by vertices d, k, i, h, f in Figure 3. Let p be a point in the interior257

of C, and let q be a point in the interior of an edge of C, say (f, h). Consider the endpoint h258
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r1

r2

r3

g1

g2

b1

b2

a j

c

f d
e

k

h i

Figure 3. A configuration P of 7 points in R2, whose simplicial median has
depth 6 and occurs at points b1, g1, b2, g2, d, f, k.

of this edge. Then the following inequality holds: D(p, P ) ≤ D(q, P ) ≤ D(h, P ), since any259

colourful simplices containing p also contain q, and any containing q also contain h. �260

Preprocessing: Counting points in halfplanes. Recall that, as we walk on an edge261

(a, b) and encounter edge (c, d) crossing at vertex t, we update depth in constant time. As262

mentioned, this is possible because of a preprocessing step where we count the number of263

points with colours other than c, d in each halfplane defined by (c, d). This can be done by264

brute force in linear time per edge (thus cubic time for all edges) but we can do better, not265

unlike the monochromatic case. This does not affect the overall asymptotic time complexity266

of the algorithm. Details are as follows.267

Let col(y) denote the colour of a point y. Given two points, y, z, such that col(y) < col(z),268

the directed edge s = −→yz defines two open half-spaces: s+ and s−, where s+ lies to the right269

of s, and s− to the left. Denote the number of points in s+ that have colours different from270

the endpoints of s by r(s), and those in s− by l(s). Let ri(s) and li(s) be the number of271

points of a colour i in s+ and s− respectively. Let r̄i(s) and l̄i(s) be the number of points of272

all k colours except for the colour i in s+ and s− respectively. For example, given an edge273

s = −→yz, the aforementioned quantities are:274

(1) r̄col(y)(s) =
k∑

i=1,
i 6=col(y)

ri(s) , l̄col(y)(s) =
k∑

i=1,
i 6=col(y)

li(s) .

Then275

(2) r(s) = r̄col(y)(s)− rcol(z)(s) , l(s) = l̄col(y)(s)− lcol(z)(s) .

As described in Section 2.2, for a given point p of P it is easy to compute the number of276

points in each of the 2(n−1) halfplanes determined by p and other points of P . This is done277

by sorting all points radially about p, then rotating a line and incrementing as necessary in278

constant time per point. In the colourful setting, we can choose to do this while only counting279

points of colour col(p), or while ignoring only points of colour col(p). Thus for s = −→yz we can280
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obtain and store the required quantities (i.e., the righthand sides in Equation 2) to compute281

r(s) and l(s).282

We can avoid explicitly sorting radially about each point by using the algorithm in [LC85]283

that finds all required sorted orderings in quadratic time.284

285

Topological Sweep. To compute the CSD of all vertices, we carry out a topological sweep286

for a complete graph as presented by Rafalin and Souvaine [RS08]. This removes some of287

the overhead of the general topological sweep framework [EG89], notably in avoiding the use288

of phantom vertices. These are intersections of an extension of an edge with either another289

edge or with an extension of another edge.290

Note that even though we could precompute the depth of all input points and special291

vertices as explained in sections 3.1 and 3.2, it is just as easy, and perhaps heuristically more292

efficient, to compute the depth of these positions from scratch (in O(n log n) time each) only293

when necessary, while performing the topological sweep. In fact by the nature of the sweep,294

we will end up computing the depth of at most one special vertex per colourful edge from295

scratch. The depth of each other vertex is computed in constant time during the sweep.296

Distinguishing vertices that are dealt with from scratch is done with the use of a flag for297

each edge (specifically, ver(), which is described later).298

Combinatorially, the topological line that sweeps through the graph is a cut. It intersects299

every edge of the graph at most once, and separates the plane into two regions: one in which300

the depth of all points and vertices is known, and one to be discovered. The discovery of each301

new input point or vertex is called an elementary step. At each elementary step we compute302

the CSD of the discovered position. The topological sweep prioritizes processing vertices303

that have neighbouring vertices or input points with known depth. The prioritization of304

vertices is based on the topology of neighbouring processed positions with respect to the305

implied cut, but this detail is not important here. The reader is referred to [RS08] for306

details. In the pseudocode of Algorithm 2, we propagate the cut using ver(s), which stores307

the last processed vertex on each edge s, along with its CSD. We also store the crossing308

edge that defines ver(s) on s, and denote it by cross(ver(s)). Before starting the topological309

sweep, for each s ∈ S we assign ver(s) = ∅. After completing an elementary step where we310

discover a vertex v that lies at the intersection of two edges, si and sj, we assign ver(si)← v,311

ver(sj)← v, cross(ver(si))← sj, cross(ver(sj))← si. We do this so that we can compute312

the CSD of a newly discovered vertex using the CSD of an adjacent one. When an elementary313

step discovers a input point, we compute its depth in O(n log n) time from scratch; see lines314

6− 7 in Algorithm 2.315

When we discover a new vertex v, we need to know if its depth can be computed in constant316

time via an update. We do not perform such an update if ver(si) = ∅ and ver(sk) = ∅, as317

this implies that v is the first vertex to be discovered for both of its incident edges, which318

means that the only positions with known CSD adjacent to v are input points. In this case319

we compute the depth of v from scratch; see lines 10− 11 of Algorithm 2. Recall that when320

this happens, the other special vertices on the edges incident to v will end up being processed321

in constant time. As an example, in Figure 2, if c2 happens to be discovered before c1 and322

c3, then we will not run the CSD algorithm for those two vertices. Instead they will be323

approached via a sequence of constant-time updates.324

As mentioned in sections 3.1 and 3.2, while walking on a given edge si, if we know the325

depth at some vertex p on the intersection with edge sj and then move to an adjacent vertex326
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v on sk for some new k, it is easy to update depth in constant time. See Subroutine 1 as327

a reminder. The constant time update is possible if ver(si) or ver(sk) are non-empty. If328

both are non-empty, we are free to update using either. This is handled in lines 12 − 19 of329

Algorithm 2.330

We maintain and update the deepest point found, using variables median and max.331

Subroutine 1 Computing D(v) from D(p)

Input: D(p), p, v, sk, sj. Output: D(v).

1: if v is to the left of sj then

2: D(v)← D(p)− r(sk);
3: else

4: D(v)← D(p)− l(sk);
5: end if

6: if p is to the left of sk then

7: D(v)← D(v) + r(sj);
8: else

9: D(v)← D(v) + l(sj);
10: end if

11: return D(v);

3.4. Summary of Time and Space Complexity. As preprocessing, we compute counts332

r(s) and l(s) for every s, i.e., for every pair of input points. This is done using quadratic333

time and space. Algorithm 2 can then look up these values whenever necessary.334

The topological sweep algorithm in [RS08] runs in O(K+nM) time, where n is the number335

of input points, M is the maximum number of edges cut by any topological line, and K is336

the number of graph segments. A graph segment is the subset of an edge between adjacent337

intersections with other edges. Given that M = O(n2) and K = O(n4), the time complexity338

of the topological sweep executed on our input is O(n4), not factoring in how to process each339

elementary step.340

As already described, each of the n input points will be processed in O(n log n) time.341

The same may be true for at most one vertex per colourful edge, generating a total cost342

of O(n3 log n). All other vertices cost O(1). Thus the algorithm takes O(n4) time, where343

dominating complexity lies in the topological sweep.344

We do not store all vertices, but only the list of all ver(), i.e., one vertex per edge. Thus345

the space used for this algorithm is O(n2), both for the sweep and for the list.346

Theorem 3.2. Given a set of input points P ⊂ R2 in general position in k different colours,347

k ≥ 3, the colourful simplicial median of P can be found using O(n4) time and O(n2) space,348

where |P | = n.349

4. Conclusions and Questions350

Our first main result, Theorem 2.5, is an algorithm computing the colourful simplicial351

depth of a point x relative to a configuration P =
(
P 1, P 2, . . . , P k

)
of n points in R2 in352

k colour classes, with time complexity O(n log n), or O(n) if the input is already sorted353

around x. Theorem 2.5 is optimal up to a constant factor given sorted input, or under the354

assumption that sorting is required. Alternatively, we expect that it is possible to drop this355
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Algorithm 2 Computing µ̂(P)

Input: P, P1, . . . , Pk. Output: v, µ̂(P).

1: Compute all r(s), l(s), as described in Preprocessing (Section 3.3);

2: max← 0;

3: for all s ∈ S, let ver(s)← ∅;
4: while unprocessed vertices exist do . Start of the topological sweep.

5: v← next vertex provided by topological sweep;

6: if v ∈ P then . Wlog let it be Pi
7: D(v) = CSD of v with respect to P;
8: else

9: Identify si and sk as edges intersecting at v.
10: if ver(si) = ∅ & ver(sk) = ∅ then . v has no adjacent vertices

11: D(v) = CSD of v with respect to P;
12: else if ver(si) 6= ∅ then . will update v using adjacent vertex on si
13: p← ver(si);
14: sj ← cross(ver(si));
15: D(v)← Subroutine 1 (D(p), p, v, sj, sk);
16: else . will update v using adjacent vertex on sk
17: p← ver(sk);
18: sj ← cross(ver(sk));
19: D(v)← Subroutine 1 (D(p), p, v, sj, si);
20: end if

21: ver(si)← v, ver(sk)← v, cross(ver(si))← sk, cross(ver(sk))← si;
22: end if

23: if D(v) > max then

24: max← D(v);
25: median← v;
26: end if

27: end while . End of the topological sweep.

28: return (median, max).

assumption by extending the Ω(n log n) lower bound for computing monochromatic simplicial356

depth [ACG+02] to the colourful case.357

The second main result, Theorem 3.2, is an algorithm computing the colourful simplicial358

median of a configuration P =
(
P 1, P 2, . . . , P k

)
of n points in R2 in O(n4) time. This359

running time is optimal assuming we must generate all Θ(n4) intersection points of the360

colourful edges formed by pairs of points from P . One would need to come up with a way of361

decreasing the pool of candidates for a colourful simplicial median, to improve this running362

time. We conjecture that this is not possible. The space used by our algorithm is O(n2).363

Algorithm 2 returns a point that has maximum colourful simplicial depth along with its364

CSD. It is simple to modify the algorithm to return a list of all such points. We conjecture365

that the number of simplicial medians from the set of input points and the induced vertices366

is O(n2) and thus that maintaining such a list will not increase the required storage. A367

weaker version of this is also possible, where it is possible compute the output using O(n2)368

storage, but the output itself may be larger than O(n2).369
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For (d + 1) colours in Rd, it is not clear how efficiently one can exhibit a single colourful370

simplex containing a given point [BO97, MS18a, MS18b].371

It would be interesting to extend recent results on high-dimensional monochromatic depth372

[PWW17, ASS16] to the colourful setting. Another direction for future research is to obtain373

output-sensitive algorithms for colourful depth, for instance extending the work in [EE05].374
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