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Abstract. The colourful simplicial depth (CSD) of a point x ∈ IR2 rel-
ative to a configuration P = (P 1, P 2, . . . , P k) of n points in k colour
classes is exactly the number of closed simplices (triangles) with vertices
from 3 different colour classes that contain x in their convex hull. We
consider the problems of efficiently computing the colourful simplicial
depth of a point x, and of finding a point in IR2, called a median, that
maximizes colourful simplicial depth.

For computing the colourful simplicial depth of x, our algorithm runs
in time O (n logn+ kn) in general, and O(kn) if the points are sorted
around x. For finding the colourful median, we get a time of O(n4).
For comparison, the running times of the best known algorithm for the
monochrome version of these problems are O (n logn) in general, improv-
ing to O(n) if the points are sorted around x for monochrome depth, and
O(n4) for finding a monochrome median.

1 Introduction

The simplicial depth of a point x ∈ IR2 relative to a set P of n data points
is exactly the number of simplices (triangles) formed with the points from P
that contain x in their convex hull. A simplicial median of the set P is any
point in IR2 which is contained in the most triangles formed by elements of P ,
i.e. has maximum simplicial depth with respect to P . Here we consider a set
P that consists of k colour classes P 1, . . . , P k. The colourful simplicial depth
of x with respect to configuration P is the number of triangles with vertices
from 3 different colour classes that contain x. A colourful simplicial median of
a configuration P = (P 1, P 2, . . . , P k) is any point in the convex hull of P with
maximum colourful simplicial depth.

The monochrome simplicial depth was introduced by Liu [16]. Up to a con-
stant, it can be interpreted as the probability that x is in the convex hull of a
random simplex generated by P . The colourful version, see [7], generalizes this
to selecting points from k distributions. Then medians are central points which
are in some sense most representative of the distribution(s). Our objective is
find efficient algorithms for finding both the colourful simplicial depth of a given
point x with respect to a configuration, and a colourful simplicial median of a
configuration.



1.1 Background

Both monochrome and colourful simplicial depth extend to IRd and are natural
objects of study in discrete geometry. For more background on simplicial depth
and competing measures of data depth, see [2] and [11]. Monochrome depth
has seen a flurry of activity in the past few years, most notably relating to the
First Selection Lemma, which is a lower bound for the depth of the median, see
e.g. [17]. Among the recent work on colourful depth are proofs of the lower [20]
and upper [1] bounds conjectured by Deza et al., with the latter result showing
beautiful connections to Minkowski sums of polytopes.

The monochrome simplicial depth can be computed by enumerating sim-
plices, but in general dimension, it is quite challenging to compute it more effi-
ciently [2], [5], [11]. Several authors have considered the two-dimensional version
of the problem, including Khuller and Mitchell [14], Gil, Steiger and Wigderson
[13] and Rousseeuw and Ruts [19]. Each of these groups produced an algorithm
that computes the monochrome depth in O(n log n) time, with sorting the input
as the bottleneck. If the input points are sorted, these algorithms take linear
time.

We consider a simplicial median to be any point x ∈ IR2 maximizing the
simplicial depth. Aloupis et al. [3] considered this question, and found an O(n4)
algorithm to do this. This is arguably as good as should be expected, following
the observation of Lemma 2 in Section 3.1 that shows that there are in some
sense Θ(n4) candidate points for the location of the colourful median.

1.2 Organization and Main Results

In Section 2, we develop an algorithm for computing colourful simplicial depth
that runs in O(n log n+kn) time. This retains the O(n log n) asymptotics of the
monochrome algorithms when k is fixed. As in the monochrome case, sorting the
initial input is a bottleneck, and the time drops to O(kn) if the input is sorted
around x. In this case, for fixed k, it is a linear time algorithm.

In Section 3, we turn our attention to computing a colourful simplicial me-
dian. We develop an algorithm that does this in O(n4) time using a topological
sweep. This is independent of k and matches the running time from the monotone
case. Section 4 contains conclusions and discussion about future directions.

2 Computing Colourful Simplicial Depth

2.1 Preliminaries

We consider a family of sets P 1, P 2, . . . , P k ⊆ IR2, k ≥ 3, where each P i

consists of the points of some particular colour i. Refer to the jth element of P i

as P i
j . We generally use superscripts for colour classes, while subscripts indicate

the position in the array. We will sometime perform arithmetic operations on
the subscripts, in which case the indices are taken modulo the size of the array
i.e. (mod ni).
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We denote the union of all colour sets by P : P =
k⋃

i=1

P i. The total number

of points is n, where |P i| = ni,
k∑

i=1

ni = n. We assume that points of P
⋃
{x}

are in general position to avoid technicalities. Without loss of generality, we can
take x = 0, the zero vector.

Definition 1. A colourful triangle is a triangle with one vertex of each colour,
i.e. it is a triangle whose vertices v1, v2, v3 are chosen from distinct sets P i1 ,
P i2 , P i3 , where ii 6= i2, i3; i2 6= i3.

Definition 2. The colourful simplicial depth D̂(x, P ) of a point x relative to
the set P in IR2 is the number of colourful triangles containing x in their convex
hull. We reserve D(x, P ) for the (monochrome) simplicial depth, which counts
all triangles from P regardless of the colours of their vertices.

Remark 1. We are checking containment in closed triangles. With our general
position assumption, this will not affect the value of D̂(x, P ). It is more natural
to consider closed triangles than open triangles in defining colourful medians;
the open triangles version of this question may also be interesting.

Throughout the paper we work with polar angles θij formed by the data

points P i
j and a fixed ray from x. We remark that simplicial containment does

not change as points are moved on rays from x, see for example [23]. Thus we
can ignore the moduli of the P i

j , and work entirely with the θij , which lie on
the unit circle C with x as its origin. We will at times abuse notation, and not
distinguish between P i

j and θij .
Note that the ray taken to have angle 0 is arbitrary, and may be chosen based

on an underlying coordinate system if available, or set to the direction of the
first data point P1. We can sort the input by polar angle, in other words, we
can order the points around x. (Perhaps it is naturally presented this way.) We
reduce the θij to lie in the range [0, 2π).

The antipode of some point α on the unit circle is ᾱ = (α+π) mod 2π. A key
fact in computing CSD is that a triangle 4abc does not contain x if and only if
the corresponding polar angles of points a, b and c lie on a circular arc of less
than π radians. This is illustrated in Fig. 1, and is equivalent to the following
lemma, stated by Gil, Steiger and Wigderson [13]:

Lemma 1. Given points a, b, c on the unit circle C centred at x, let ā be an-
tipodal to a. Then 4abc contains x if and only if ā is contained in the minor arc
(i.e. of at most π radians) with endpoints b and c.

2.2 Outline of Strategy

Recall that we denote the ordinary and colourful simplicial depth by D(x, P )
and D̂(x, P ) respectively. We can compute D̂(x, P ) by first computing D(x, P )
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x

bc
ā

a

Fig. 1. Antipode ā falls in the minor arc between b and c and, therefore, the triangle
4abc contains x.

and then removing all triangles that contain less than three distinct colours. To
this end, we denote the number of triangles with at least two vertices of colour i
as Di(x, P ). When x and P are clear from the context, we will abbreviate these
to D, D̂ and Di.

Since we can compute D(x, P ) efficiently using the algorithms mentioned in
the introduction [13], [14], [19], the challenge is to compute Di(x, P ) for each

i = 1, 2, . . . , k. Then we conclude D̂(x, P ) = D(x, P )−
k∑

i=1

Di(x, P ). To compute

Di efficiently for each colour i, we walk around the unit circle tracking the minor
arcs between pairs of points of colour i, and the number of antipodes between
them. We do this in linear time in n by moving the front and back of the
interval once around the circle, and adjusting the number of relevant antipodes
with each move. This builds on the approach of Gil, Steiger and Wigderson [13]
for monochrome depth.

Remark 2. When computing Di, we count antipodes of all k colours; the tri-
angles with three vertices of colour i will be counted three times: 4abc, 4bca
and 4cab. Thus the quantity obtained by this count is in fact Di

∗ := Di +

2
k∑

i=1

D(x, P i). We separately compute
k∑

i=1

D(x, P i), allowing us to correct for

the overcounting at the end.

2.3 Data Structures and Preprocessing

We begin with the arrays θi of polar angles, which we sort if necessary. All

elements in
k⋃

i=1

θi are distinct due to the general position requirement. By con-

struction we have:

0 ≤ θi0 < θi1 < . . . < θini−1 < 2π, for all 1 ≤ i ≤ k . (1)

Let θ̄i be the array of antipodes of θi, also sorted in ascending order. We generate
θ̄i by finding the first θij ≥ π, moving the part of the array that begins with that
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x
θij

θil(i,j)

θ̄ij
θil(i,j)+1

Fig. 2. Index l(i, j) and index (l(i, j) + 1)

element to the front, and hence the front of the original array to the back; π is
subtracted from the elements moved to the front and added to those moved to
the back. This takes linear time.

We merge all θ̄i into a common sorted array denoted by A. Now we have
all antipodes ordered as if we were scanning them in counter-clockwise order
around the circle C with origin x. Let us index the n elements of A starting from
0. Then, for each colour i = 1, . . . , k, we merge A and θi into a sorted array
Ai. Once again, this corresponds to a counter-clockwise ordering of data points
around C.

While building Ai, we associate pointers from the elements of array θi to
the corresponding position (index) in Ai. This is done by updating the point-
ers whenever a swap occurs during the process of merging the arrays. De-
note the index of some θij in Ai by p(θij). Then the number of the antipodes

that fall in the minor arc between two consecutive points θij and θij+1 on C is(
p
(
θij+1

)
− p

(
θij
)
− 1
)
, if p

(
θij
)
< p

(
θij+1

)
, or

(
n+ ni − p

(
θij
)

+ p
(
θij+1

)
− 1
)
,

if p
(
θij
)
> p

(
θij+1

)
. Note that p

(
θij
)

is never equal to p
(
θij+1

)
.

Now, for each point θij , we find the index l(i, j) in the corresponding array θi

such that 6 θij , x, θ
i
l(i,j) < π and 6 θij , x, θ

i
l(i,j)+1 > π (Fig. 2). Thus the sequence

of points θij , θ
i
j+1, . . . , θ

i
l(i,j) is maximal on an arc shorter than π. Viewing the

minor arc between two points as an interval, the intervals with left endpoint
θij and right end point from this sequence overlap and can be split into small
disjoint intervals as follows:

[
θij , θ

i
t

)
=

t⋃
h=j+1

[
θih−1, θ

i
h

)
, where t = j + 1, . . . , l(i, j) . (2)

2.4 Computing Di
∗

Let us denote the count of the antipodes within the minor arc between a and b
by c(a, b). Then Di

∗ can be written as follows:

Di
∗ =

ni−1∑
j=0

l(i,j)∑
t=j+1

c
(
θij , θ

i
t

)
. (3)
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Note that index t is taken modulo ni. From (2) we have:

c
(
θij , θ

i
t

)
=

t∑
h=j+1

c
(
θih−1, θ

i
h

)
, for t = j + 1, . . . , l(i, j) . (4)

Due to (3) and (4), we have:

Di
∗ =

ni−1∑
j=0

l(i,j)∑
t=j+1

t∑
h=j+1

c
(
θih−1, θ

i
h

)
. (5)

Let Ci
h = c

(
θih−1, θ

i
h

)
, |Ci| = ni. Then (5) can be rewritten as:

Di
∗ =

ni−1∑
j=0

l(i,j)∑
t=j+1

t∑
h=j+1

Ci
h . (6)

Let us create an array of prefix sums: Si, where Si
t =

∑t
h=0 C

i
h, |Si| = ni.

This array can be filled in O(ni) time and proves to be very useful when we need
to calculate a sum of the elements of Ci between two certain indices. In fact,
such sum can be obtained in constant time using the elements of array Si:

t∑
h=j+1

Ci
h =


Si
t − Si

j , if t ≥ j + 1, j 6= ni − 1 ,

Si
ni−1 + Si

t − Si
j , if t < j + 1, j 6= ni − 1 ,

Si
t , if j = ni − 1 .

(7)

Combining (6) and (7), we get:

Di
∗ =

ni−1∑
j=0

l(i,j)∑
t=j+1

Si
t −

ni−1∑
j=0

((l(i, j)− j) mod ni) · Si
j +


0, if t ≥ j + 1 or j = ni − 1 ,
ni−1∑
j=0

l(i,j)∑
t=j+1

Si
ni−1, if t < j + 1 .

(8)

Let us create another array of prefix sums T i, where T i
j =

∑j
t=0 S

i
t , |T i| = ni.

This array is used to retrieve the sum of elements of Si between the indices j+1
and l(i, j) in O(1) time:

l(i,j)∑
t=j+1

Si
t =


T i
l(i,j) − T

i
j , if l(i, j) ≥ j + 1, j 6= ni − 1 ,

T i
ni−1 + T i

l(i,j) − T
i
j , if l(i, j) < j + 1, j 6= ni − 1 ,

T i
l(i,j), if j = ni − 1.

(9)

Also note that the index t runs from j + 1 to l(i, j). So t < j + 1 in (8) is only
possible if initially j + 1 > l(i, j) and we wrapped around the array. In other
words, t < j + 1 is equivalent to j + 1 > l(i, j) and t = 0, . . . , l(i, j).
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After simplifying, we obtain:

Di
∗ =

ni−1∑
j=0

(
T i
l(i,j) − T

i
j − ((l(i, j)− j) mod ni) · Si

j

)

+

{
ni ·

(
T i
ni−1 + ((l(i, j) + 1) mod ni) · Si

ni−1
)
, if l(i, j) < j + 1 ,

0, otherwise .

(10)

2.5 Algorithm and Analysis

Algorithm 1 CSD(x, P)

Input: x, P = (P1, . . . , Pk). Output: D̂(x, P).

1: Sum1← 0, Sum2← 0;
2: for i← 1, k do

3: for j← 0, ni − 1 do

4: θij ← polar angle of (Pij − x) mod 2π;
5: θ̄ij ← (θij + π) mod 2π;
6: end for

7: Sort(θi); . while permuting θ̄i

8: Restore the order in θ̄i;
9: Sum1← Sum1 + D(x, θi); . use the algorithm from [19]

10: end for

11: A← Merge(θ̄1, . . . , θ̄k); . A is sorted

12: D← D(x, A); . use the algorithm from [19]

13: for i← 1, k do

14: B← Merge(A, θi); . update p(θij) the pointers of θij,
15: . B stands for Ai

16: for j← 1, ni do . j = j mod ni
17: if p(θij−1) < p(θij) then

18: Cj ← p(θij)− p(θij−1)− 1; . C = Ci - array of antipodal counts

19: else

20: Cj ← n + ni − p(θij−1) + p(θij)− 1;
21: end if

22: end for

23: Find l(i, 0) using binary search in θi;
24: S0 ← C0; T0 ← S0; . S = Si, T = Ti - prefix sum arrays

25: for j← 1, ni − 1 do

26: Find l(i, j);
27: Sj ← Sj−1 + Cj;
28: Tj ← Tj−1 + Sj;
29: end for

30: Sum2← Sum2 + Di∗(x, P) obtained from the formula (10);

31: delete B, C, S, T;
32: end for

33: return D̂(x, P) = D− (Sum2− 2 ∗ Sum1) ; . Sum1 =
k∑

i=1

D(x, Pi)
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First, we find all polar angles and their antipodes, which takes O(n) in total.
Second, we sort the arrays of polar angles θi and their corresponding antipodal

elements θ̄i, which gives us O

(
k∑

i=1

ni log ni

)
. Third, we need to rotate θ̄i, so

that they are in ascending order. This will take O(n) time. Then we compute
for each i the number of triangles with all three vertices of colour i that contain
x using the algorithm of Rousseeuw and Ruts [19] for sorted data. This will run
in O(ni), for each i, or O(n) in total. Hence lines 2-10 of the Algorithm 1 take

O

(
k∑

i=1

ni +
k∑

i=1

ni log ni

)
= O(n log n) time to complete. This follows from the

facts that
k∑

i=1

ni = n and n log n is convex.

To generate the sorted array A of antipodes, we merge the k single-coloured
arrays using a heap (following e.g. [6]) in O(n log k) time. We need to compute
the monochrome depth D(x, P ) of x with respect to all points in P , regardless
of colour. For this we can use the sorted array of antipodes rather than sorting
the original array. Thus we again use the linear time monochrome algorithm [19]
with x and A. Note that working with the antipodes is equivalent due to the
fact that the simplicial depth of x does not change if we rotate the system of
data points around the centre x.

After that, we execute a cycle of k iterations – one for each colour. It starts
with merging two sorted arrays A and θi, which is linear in the size of arrays

we are merging and takes O

(
k∑

i=1

(n+ ni)

)
= O (kn) in total. Filling the ar-

rays C is linear. Since the l(i, j) appear in sequence in the array θi, we find
the first one l(i, 0) using a binary search that takes O(log ni), and O(k log n)
in total. Then we find the rest of l(i, j) in O(n) time for each i by scanning
through the array starting from the element θil(i,0). The remaining operations
take constant time to execute. Therefore, total running time of Algorithm 1 is
O (n+ n log n+ n+ n log k + kn+ k log n+ kn) = O (n log n+ kn). The n log n
term corresponds to the initial sorting of the data points, if they are presented
in sorted order, the running time drops to O(kn).

As for space, arrays θi, θ̄i and A take O(3n) = O(n) space in total. Note
that merging k sorted arrays into A can be done in place [12]. At each iteration
i, we create B of size O(n + ni), and C, S, T of size O(ni) each. Fortunately,
we only need these arrays within the ith iteration, so we can delete them in the
end (line 31 of the Algorithm 1) and reuse the space freed. To store the indices
l(i, j), we need O(n) space, which again can be reallocated when i changes. Thus
the amount of space used by our algorithm is O(n).

An implementation of this algorithm is available on-line [22].

Remark 3. In Section 3, we will want to compute the colourful simplicial depth
of the data points themselves. This can be done by computing D̂(x, P \ {x})
and counting colourful simplices which have x as a vertex. This is the number
of pairs of vertices of some other colour, and can be computed in linear time.
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3 Computing Colourful Simplicial Medians

3.1 Preliminaries

Consider a family of sets P 1, P 2, . . . , P k ∈ IR2, k ≥ 3, where each P i consists
of the points of some particular colour i. Define ni = |P i|, for i = 1, . . . , k. Let

P be the union of all colour sets: P =
k⋃

i=1

P i. Recall that we denote the CSD of

a point x ∈ IR2 relative to P by D̂(x, P ).
Our objective is to find a point x inside the convex hull of P , denoted

conv(P ), maximizing D̂(x, P ). Call the depth of such a point µ̂(P ). Let S be the
set of line segments formed by all possible pairs of points (A,B), where A ∈ P i,
B ∈ P j , i < j. The following lemma (from [3]) is here adapted to a colourful
setting:

Lemma 2. To find a point with maximum colourful simplicial depth it suffices
to consider the intersection points of the colourful segments in S.

Proof. The segments of S partition conv(P ) into cells1 of dimension 2, 1, 0 of
constant colourful simplicial depth [7]. Consider a 2-dimensional cell. Let p be
a point in the interior of this cell, q a point on the interior of an edge and v
a vertex, so that q and v belong to the same line segment (Fig. 3). Then the
following inequality holds: D̂(p, P ) ≤ D̂(q, P ) ≤ D̂(v, P ), since any colourful
simplices containing p also contain q, and any containing q also contain v.

p
q

v

Fig. 3. An example of a cell

Let col(A) denote the colour of a point A. We store the segments in S as
pairs of points: s = (A,B), col(A) < col(B). It is helpful to view each segment
as directed, i.e. a vector, with A as the tail and B as the head. Each segment
s extends to a directed line h dividing IR2 into two open half-spaces: s+ and
s−, where s+ lies to the right of the vector s, and s− to the left (Fig. 4). We
denote the set of lines generated by segments by H, so that every segment s ∈ S
corresponds to a line h ∈ H.

We call the intersection points of the segments in S vertices. Note that draw-
ing the colourful segments is equivalent to generating a rectilinear drawing of the

1 Some points of conv(P ) may fall outside any cell.

9



A

B

s+

s−

(a)

A

B

s+
s−

(b)

Fig. 4. s+ and s− of the segment s = (A,B)

complete graph Kn with a few edges removed (the monochrome ones). Thus, un-
less the points are concentrated in a single colour class, the Crossing Lemma (see
e.g. [18]) shows that we will have Θ(n4) vertices. Computing the CSD of each of
these points gives an O(n4 log n) algorithm for finding a simplicial median.

To improve this, we follow Aloupis et al. [3], and compute the monochrome
simplicial depth of most vertices based on values of their neighbours and infor-
mation about the half-spaces of local segments.

Denote the number of points in s+ that have colours different from the end-
points of s by r(s), and those in s− by l(s). Let ri(s) and li(s) be the number of
points of a colour i in s+ and s− respectively. Let r̄i(s) and l̄i(s) be the number
of points of all k colours except for the colour i in s+ and s− respectively. So for

segment s = (A,B), we have quantities as follows r̄col(A)(s) =
k∑

i=1,
i 6=col(A)

ri(s),

l̄col(A)(s) =
k∑

i=1,
i 6=col(A)

li(s). Then it follows: r(s) = r̄col(A)(s) − rcol(B)(s) and

l(s) = l̄col(A)(s) − lcol(B)(s). The quantities r̄col(A)(s) and l̄col(A)(s), rcol(B)(s)
and lcol(B)(s), can be obtained as byproducts of running an algorithm that com-
putes half-space depth.

The half-space depth HSD(x, P ) of a point x relative to data set P is the
smallest number of data points in a half-plane through the point x [21]. An
algorithm to compute half-space depth is described by Rousseeuw and Ruts [19],
it runs in O(|P |) time when P is sorted around x. It calculates the number of
points ki in P that lie strictly to the left of each line formed by x and some point

Pi, where x is the tail of the vector
−→
xPi. Then the number of points to the right−→

xPi is |P | − ki − 1. These intermediate calculations are used in our algorithm.

The algorithm of [15] will, for each Pi ∈ P , sort P \{Pi} around Pi in Θ(|P |2)
time. In particular, it assigns every point Pi ∈ P a list of indices that determine
the order of points P \ {Pi} in the clockwise ordering around Pi. Denote this by
List(Pi). These ideas allow us to compute r(s) and l(s) for every segment s. At
every iteration i, we form arrays of sorted polar angles θ̄col(Pi) and θi

′
. Together

they take O(2n) = O(n) space.
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3.2 Computing a Median

To compute the CSD of all vertices, we carry out a topological sweep (see e.g. [9]).
We begin by extending the segments in S to a set of lines H. The set V ∗ of
intersection points of lines of H includes the Θ(n4) vertices V which are on
the interior of a pair of segments of S, points from P , and additional exterior
intersections. We call points in V ∗ \ V phantom vertices.

Call a line segment of any line in H between two neighbouring vertices, or a
ray from a vertex on a line that contains no further vertices an edge. A topological
line is a curve in IR2 that is topologically a line and intersects each line in H
exactly once. We choose an initial topological line to be an unbounded curve
that divides IR2 into two pieces such that all the finitely many vertices in V
lie on one side of the curve, by convention the right side. We call this line the
leftmost cut. We call a vertical cut the list (c1, c2, . . . , cm) of the m = |H| edges
intersecting a particular topological line. For each i, 1 ≤ i ≤ m− 1, ci and ci+1

share a 2-cell in the complex induced by H.
The topological sweep begins with the leftmost cut and moves across the

arrangement to the right, crossing one vertex at a time. If two edges ci and ci+1

of the current cut have a common right endpoint, we store the index i in the
stack I. For example, in Figure 5(a), I = {1, 4}. An elementary step is performed
when we move to a new vertex by popping the stack I. In Figure 5(b), we have
moved past the vertex v, a common right endpoint of c4 and c5 which is the
intersection point of h1 and h2. The updated stack is I = {1, 3}.

h1

h2

h3

h4

h5 c1

c2

c3

c4

c5

(a) The leftmost cut

h1

h2

h3

h4

h5

v

c1

c2

c3

c6
c7

(b) An elementary step in a topological
sweep

Fig. 5.

We focus on the elementary steps, because at each step we can compute the
CSD of the crossed vertex. As it moves, the topological line retains the property
that everything to the left of it has already been swept over. That is, if we are
crossing vertex v that belongs to segment s, every vertex of the line containing
s on the opposite side of the topological line prior to crossing has already been
swept. For each segment s ∈ S we store the last processed vertex and denote
it by ver(s), along with its CSD. Since every vertex lies at the intersection
of two segments, we also store the crossing segment for s and ver(s), denote
it by cross(ver(s)). Before starting the topological sweep, for each s ∈ S we
assign ver(s) = ∅, and cross(ver(s)) = ∅. After completing an elementary step
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where we crossed a vertex v that lies at the intersection of si and sj , we assign
ver(si)← v, ver(sj)← v, cross(ver(si)) = sj , cross(ver(sj)) = si.

The topological sweep skips through phantom vertices, and computes the
CSD of vertices in P directly. We now explain how we process a non-phantom
vertex v at an elementary step when we have an adjacent vertex already com-

puted. Assume v is at the intersection of si =
−−→
AB and sk =

−−→
EF , see Figure 6(a).

Without loss of generality we take ver(si) = p, where cross(ver(si)) = sj . We

p

v

AA′

B

B′

C

D

E

F

si

sj

sk

(a) Two adjacent vertices p and v and their cor-
responding line segments. A colourful triangle
4CDA′ contains p but not v, where col(A′) /∈
{col(C), col(D)}. Similarly, a colourful triangle
4EFB′ contains v but not p, where col(B′) /∈
{col(E), col(F )}.

v

A = p

B

E

F

si sk

(b) Here
ver(si) = ∅, hence
cross(ver(si)) = ∅,
and we can not run
Subroutine 2.

Fig. 6. Capturing a new vertex

view this elementary step as moving along the segment si from its intersection
point with sj to the one with sk. Each intersecting segment forms a triangle
with every point strictly to one side. Thus when we leave segment sj = (C,D)
behind, we exit as many colourful triangles that contain p as there are points
on the other side of sj of colours different from col(C) and col(D). When we
encounter segment sk = (E,F ), we enter the colourful triangles that contain v
formed by sk and each point of a colour different from col(E) and col(F ) on
the other side of sk. Let us denote the x and y coordinates of a point A by A.x
and A.y respectively. Now, to compute the CSD of v knowing the CSD of p, we
execute Subroutine 2.

When both ver(si) = ∅, ver(sk) = ∅, i.e. vertex v is the first vertex to
be discovered for both segments (Fig. 6(b)), we execute CSD(v, P ) to find the
depth, and otherwise update in the usual way. Since once a segment s has ver(s)
nonempty it cannot return to being empty, we call CSD at most O(n2) times.

3.3 Running Time and Space Analysis

Algorithm 3 is our main algorithm. First, it computes the half-space counts r(s)
and l(s), which has a running time of O(n2). At the same time, we initialize
the structure S that contains the colourful segments, setting ver(s) = ∅ and

12



Subroutine 2 Computing D̂(v) from D̂(p)

Input: D̂(p), p, v, sj = (C, D), sk = (E, F). Output: D̂(v).

1: if (v.x− C.x)(D.y− C.y)− (v.y− C.y)(D.x− C.x) < 0 then
2: D̂(v)← D̂(p)− r(sj);
3: else
4: D̂(v)← D̂(p)− l(sj);
5: end if
6: if (p.x− E.x)(F.y− E.y)− (p.y− E.y)(F.x− E.x) < 0 then
7: D̂(v)← D̂(v) + r(sk);
8: else
9: D̂(v)← D̂(v) + l(sk);

10: end if

cross(ver(s)) = ∅ for all s ∈ S. Note that these as well as H, List(Pi), r(s), l(s)
require O(n2) storage.

Sorting the lines in H according to their slopes while also permuting the
segments in S takes O(n2 log n) time. We assume non-degeneracy and no vertical
lines (these can use some special handling, see e.g. [10]). Computing the CSD of
points where no previous vertex is available takes O(n2 log n+ kn2) total time.
The topological sweep takes linear time in the number of intersection points of
H, so O(n4). We do not store all the vertices, but only one per segment. Steps
15-28 (except for 18) in Algorithm 3 take O(1) time, including the calls to the
Subroutine 2. As for step 18, it could happen O(n) times. Therefore, the total
time it will take is O(n2 log n + kn2). Hence overall our algorithm takes O(n4)
time and needs O(n2) storage.

Algorithm 3 returns a point that has maximum colourful simplicial depth
along with its CSD. It is simple to modify the algorithm to return a list of all
such points if there is more than one.

4 Conclusions and Questions

Our main result is an algorithm computing the colourful simplicial depth of a
point x relative to a configuration P =

(
P 1, P 2, . . . , P k

)
of n points in IR2 in

k colour classes can be solved in O(n log n + kn) time, or in O(kn) time if the
input is sorted. If we assume, as seems likely, that we cannot do better without
sorting the input, then for fixed k this result is optimal up to a constant factor.
It is an interesting question whether we can improve the dependence on k, in
particular when k is large.

Computing colourful simplicial depth in higher dimension is very challenging,
in particular because there is no longer a natural (circular) order of the points.
Non-trivial algorithms for monochrome depth do exist in dimension 3 [5], [13],
but we do not know of any non-trivial algorithms for d ≥ 4. Algorithms for
monochrome and colourful depth in higher dimension are an appealing challenge.
Indeed, for (d+1) colours in IRd, it is not even clear how efficiently one can exhibit
a single colourful simplex containing a given point [4], [8].
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Algorithm 3 Computing µ̂(P)

Input: P1, . . . , Pk, S, H, r(s), l(s). Output: v, µ̂(P).

1: Preprocessing: Initialize S, compute r(s), l(s);
2: Sort H while permuting S;

3: max← 0;

4: for i← 0, n− 1 do

5: θ = polar angles of List(Pi);
6: D̂(Pi)← CSD(Pi, θ);
7: if d > max then

8: max← D̂(Pi);
9: median← Pi;
10: end if

11: end for

12: I ← ∅;
13: Push common right endpoints of the edges of the leftmost cut onto I;

14: while I 6= ∅ do . Start of the topological sweep.

15: v← pop(I); . v lies at the intersection of si = (A, B) and sk = (E, F)
16: if v lies in the interiors of si and sk then

17: if ver(si) = ∅ & ver(sk) = ∅ then

18: D̂(v) = CSD(v, P);
19: else if ver(si) 6= ∅ then

20: D̂(v)← Subr 2 (D̂(p), p, v, sj, sk); . p = ver(si), sj = cross(ver(si))
21: else

22: D̂(v)← Subr 2 (D̂(p), p, v, sj, si); . p = ver(sk), sj = cross(ver(sk))
23: end if

24: if D̂(v) > max then

25: max← D̂(v);
26: median← v;
27: end if

28: ver(si)← v, ver(sk)← v, cross(ver(si))← sk, cross(ver(sk))← si;
29: end if

30: Push any new common right endpoints of the edges onto I;

31: end while . End of the topological sweep.

32: return (median, max).

Acknowledgments

This research was partially supported by an NSERC Discovery Grant to T. Stephen
and by an SFU Graduate Fellowships to O. Zasenko. We thank A. Deza for com-
ments on the presentation.

References

1. Adiprasito, K., Brinkmann, P., Padrol, A., Paták, P., Patáková, Z., Sanyal, R.:
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