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Abstract

A prismatoid is a polytope with all its vertices contained in two par-
allel facets, called its bases. Its width is the number of steps needed to go
from one base to the other in the dual graph. The first author recently
showed that the existence of counter-examples to the Hirsch conjecture
is equivalent to that of d-prismatoids of width larger than d, and con-
structed such prismatoids in dimension five. Here we show that the same
is impossible in dimension four. This is proved by looking at the pair of
graph embeddings on a 2-sphere that arise from the normal fans of the
two bases of Q.

1 Prismatoids and pairs of maps

The first author recently constructed counter-examples to the Hirsch conjec-
ture [2] via the combination of the following two results:

• If a d-dimensional prismatoid Q has width larger than d then it is possible
to construct from it a polytope P that violates the Hirsch conjecture.

• There exist 5-prismatoids of width larger than 5.

Here, a prismatoid is a polytope that has all its vertices lying in two parallel
facets Q+ and Q− (called its bases), and its width is the dual graph distance
between those two facets. That is, the width of Q is the minimum number of
steps needed to go from Q+ to Q−, where a step consists in moving from one
facet of Q to an adjacent facet via a ridge.

The dimension of the non-Hirsch polytope P in the construction is much
higher than that of Q (it equals | vertices(Q)| − | dim(Q)|) but still the question
arose whether the dimension d = 5 for Q is the smallest possible. An easy
argument shows d = 3 cannot work, and d = 4 was left open in [2]. In this
paper we answer this question in the negative:

∗Departamento de Matemáticas, Estad́ıstica y Computación, Universidad de Cantabria,
Av. de los Castros 48, E-39005 Santander, Spain. E-mail: francisco.santos@unican.es
†Department of Mathematics, Simon Fraser University, 8888 University Drive, Burnaby,

British Columbia V5A 1S6 Canada. E-mail: tamon@sfu.ca
‡Department of Mathematics and Statistics, University of New Brunswick, Fredericton,

New Brunswick E3B 5A3 Canada. E-mail: hugh@math.unb.ca

1



Theorem 1.1. The width of a 4-dimensional prismatoid is at most four.

The proof of this theorem uses the following reduction, also from [2]. Let Q ⊂
Rd be a prismatoid with bases Q+ andQ−. Consider the bases as simultaneously
embedded into Rd−1 and let G+ and G− be the intersections of their normal
fans with the unit sphere Sd−2. G+ and G− are geodesic cell decompositions of
Sd−2, what we call geodesic maps. Let H be their common refinement: cells of
H are all the intersections of a cell of G+ and a cell of G−. Then:

• All facets of Q other than the two bases appear as vertices of H.

• The facets adjacent to Q+ (respectively to Q−) appear in H as the vertices
of G+ (respectively of G−).

• Adjacent facets of Q appear as vertices connected by an edge of H.

We call width of the pair of geodesic maps (G+, G−) the minimum graph
distance along H from a vertex of G+ to a vertex of G−. The following lemma
is clear from the above discussion:

Lemma 1.2. The width of a prismatoid Q ⊂ Rd equals two plus the width of
its corresponding pair of maps (G+, G−) in Sd−2.

In particular, the width of a 4-prismatoid is two plus the width of a pair
of maps in the 2-sphere. In the 2-sphere, knowing the (embedded) graph of a
map is enough to recover the whole map, so we rather speak of a pair of graphs
embedded in it. If the two graphs intersect other than in the interior of edges,
then the width of the pair is one or zero, so in what follows we assume that this
does not happen. Moreover, since the maps we are interested in are geodesic, an
edge of one cannot intersect an edge of the other more than once, and they do
so transversally; that is, the four branches that come out from an intersection
point alternate between G+ and G− when we look at them cyclically. Putting
together these conditions, we introduce the following notion, which looks natural
in the context of geometric graph theory:

Definition 1.3. Let S be a closed surface and let G+ and G− be two graphs
embedded in it. We say that (G+, G−) is a normal pair of graphs if G+ and G−

intersect only in the interior of edges, each edge of one intersects each edge of
the other at most once, and all the intersections are transversal.

We also consider a somewhat stronger condition:

Definition 1.4. We say that (G+, G−) form a strongly normal pair of graphs
if they are a normal pair of graphs and in addition the intersection of an edge
of G+ with the interior of a face of G− has at most one component (and also
with the roles of G+ and G− interchanged).

This condition is also satisfied by any pair of geodesic maps, since it amounts
to saying that an edge of G+ cannot leave the interior of a geodesic cell of G−

and then re-enter it, which follows from convexity.
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Figure 1: Two graphs embedded in the torus (left and center) and the normal
map they form (right), of width five

We call width of the normal pair the minimum distance from a vertex of G+

to one of G− along the common refinement of the two graphs. Put differently,
the width is one plus the minimum number of points of G+ ∩G− that you need
to go through in order to get from a vertex of G+ to one of G−. We assume
that G+ and G− intersect at least once. (Otherwise the width can be considered
infinite, but the question we address in this paper is meaningless).

As an example, the two graphs in Figure 1 form a normal pair of width five in
the torus, and the same idea shows the existence of normal pairs of arbitrarily
large width in any closed surface of non-positive Euler characteristic. This
example is taken from [1], where it is used to show the existence of prismatoids
of dimension five of arbitrarily large width. Our main result, which implies
Theorem 1.1, is that such pairs do not exist in the 2-sphere:

Theorem 1.5. Every normal pair of graphs in the sphere or the projective plane
has width two.

We prove this theorem in Section 3, using an argument based on the simple-
connectedness of the sphere. In Section 4, we use the notion of Euler charac-
teristic to provide an independent proof of the theorem, under the assumption
that the pair of graphs is strongly normal (which is still sufficient to deduce
Theorem 1.1).

2 Terminology and initial observations

Start with an arbitrary normal pair of graphs (G+, G−) in an arbitrary closed
surface S. We introduce the following nomenclature: we call G+ and G− the
positive and negative graphs, and let H be the common graph induced by the
embedding. In H we have three types of vertices: positive (vertices of G+),
negative (vertices of G−), and crossings. We also have four types of edges in
H: each edge is positive or negative depending on whether it is contained in an
edge of G+ or one of G−, and it is deep or terminal depending on whether its
two end-points are crossings or at least one of them is not. Observe that edges

3



Figure 2: A normal pair of graphs (left), its terminal part (center) and its deep
part (right)

ending in no crossings (that is, edges of G+ or G− that do not cross the other
graph of the pair) do not contribute to the width, so we may as well contract
them and assume our pair of graphs does not have any. In order to be allowed
to use contractions, we permit our graphs not to be simple.

We also show that there is no loss of generality in assuming that S is ori-
entable.

Lemma 2.1. If (G+, G−) is a normal pair in a non-orientable surface S, then
the pull-back of (G+, G−) via the double cover S′ → S from an orientable surface
S′ yields a normal pair (G+′, G−

′
) in S′ with the same width.

Proof. Every path from G+ to G− in S lifts to a path (actually to two paths)
from G+′ to G−

′
in S′, of the same length. Reciprocally, every path in S′

projects to S.

3 Proof via simple-connectedness

As in the previous section, start with an arbitrary normal pair of graphs (G+, G−)
in an arbitrary closed surface S. This proof concentrates on the deep subgraph
of H, that we denote H0. This is the subgraph consisting of deep edges or,
equivalently, the subgraph induced by the crossing points. Observe that if H0

has no edges then the width of the pair (G+, G−) is trivially two: every terminal
positive edge is adjacent to a terminal negative edge, and those two edges from
a path from G+ to G− of length two. More generally:

Lemma 3.1. The width of the pair (G+, G−) exceeds two if, and only if, every
vertex of H0 is incident to either two deep positive edges or two deep negative
edges.

Proof. The width equals two if, and only if, there is a crossing incident to both
a terminal positive and a terminal negative edge. If this does not occur then
every crossing is incident to two deep edges of one sign (and to zero, one or two
of the other).
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By Lemma 2.1, there is no loss of generality in assuming that S is orientable.
We therefore assume that S is orientable, and give an orientation to it. In
particular, this gives a meaning to the expressions “left” and “right” of a directed
edge.

Definition 3.2. A path C in H0 is well-formed if when traversing C we always
turn right when passing from a negative to a positive edge and turn left when
passing from a positive to a negative edge. (The path is allowed to “go straight”
at some of the vertices, meaning that it keeps walking along the same edge of G+

or G−). A well-formed loop is a cycle with the same property except (perhaps)
at its base vertex.

Observe that the definition is independent of the direction in which we tra-
verse the path or cycle, since reversing the direction exchanges left and right
turns but it also exchanges passings from positive to negative and passings from
negative to positive. The following two lemmas prove Theorem 1.5.

Lemma 3.3. If a normal pair of graphs in a closed surface has width larger
than two then its deep part contains a well-formed loop.

Proof. Starting at any deep edge e we can build a well-formed path as follows:
go straight on edges of the same sign as e until you cannot go further. When
this happens, Lemma 3.1 guarantees that you are at a vertex incident to two
edges in H0 of the other sign, one to the left and one to the right. Choose the
one that makes the path be well-formed and continue.

Since this process can always be continued, at some point the path will cross
with itself. The first time this happens, you declare the repeated vertex to be
the base for the loop obtained, which is well-formed by construction. (Observe
that the original edge e may not belong to the loop).

Lemma 3.4. A well-formed loop in a normal pair of graphs in a closed surface
cannot bound a disc.

Proof. Let L be a well-formed loop with base vertex v and suppose, to get a
contradiction, that it bounds a disc D. We are going to show how to construct
another well-formed loop in D, which necessarily should bound a smaller disc
D′ ⊂ D. Since the same applies to D′, we can construct an infinite sequence of
loops bounding smaller and smaller discs, a contradiction.

To construct L′ observe that, by normality of the pair of maps, the loop L
has at least two turns, apart from the possible turn at the base point v. Since
left and right turns alternate, at least one of the turns is to the left when we
traverse L in the clockwise direction (clockwise is understood with respect to
D and to the given orientation in it). Let u be the vertex where this happens.
Put differently, u is a “concave” or “reflex” vertex in the boundary of D.

By Lemma 3.1, apart from the positive and negative edges incident to u
in L, H0 has at least one more deep edge e coming out from u. Concavity
of D at u implies that e goes towards the interior of D. We use that edge e
to start a well-formed path, as in the proof of Lemma 3.3, and stop when the
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path intersects either itself or the loop L. If the path intersects itself then we
have found a well-formed loop contained in D. If it intersects L, then let w be
the point where this happens and let C be the well-formed path that we have
obtained from u to w through the interior of D. Let C1 and C2 be the two paths
in which L is divided by the vertices u and w (see Figure 3). Our claim is that
C together with one of C1 or C2 is a well-formed loop.

u

C2

v

C1

C

w

Figure 3: The situation in the proof of Lemma 3.4

Indeed, assume first that v = w. Then we start our loop from v using the
interior path C and when we arrive at u one of the turns to C1 or C2 is well-
formed, which closes the loop. If v is different from both u and w, assume that
v lies in C1. The key idea is that at both u and w at least one of the turns,
from C to C1 or from C to C2, is valid for a well-formed path. Then:

1. If both turns from C to C1 are valid, then C and C1 give a well-formed
loop based at v.

2. If the turn from C to C1 is invalid at, say, u, then C and C2 give a
well-formed loop based at w, because the turn from C to C2 is valid at u.

Proof of Theorem 1.5. Lemmas 3.3 and 3.4 imply that a normal pair of graphs
of width larger than two has a loop that does not bound a disc, which can-
not happen in the 2-sphere. For the projective plane we use the reduction of
Lemma 2.1.

4 Proof via Euler characteristic

In this section, we provide an alternative proof of Theorem 1.5, under the
stronger hypothesis that the pair (G+, G−) are strongly normal.

As discussed in Section 2, to prove Theorem 1.5, it suffices to assume that
(G+, G−) are a pair of graphs embedded in a sphere S2, such that each edge of
G+ crosses some edge of G−, and vice versa. Note that the reductions to this
case preserve the property that the pair of graphs is strongly normal. We again
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study the graph H induced by the embedding. In this case, we focus on the
complex of 0-, 1- and 2-dimensional cells (vertices, edges and faces) defined by
the embedding.

We assume that H is connected, since it suffices to consider some compo-
nent of H. The connectedness of H implies that the faces defined by H are
contractible.

We will calculate the Euler characteristic of the sphere S2, using the decom-
position induced by H. Since the faces of the decomposition are contractible,
this is just the number of vertices of H, minus the number of edges, plus the
number of faces. Our strategy will be to bound this sum by a contribution
for each face. Assuming that the width of (G+, G−) is greater that two, we
will show that the contribution for each face is non-positive, and thus that the
Euler characteristic of S2 is non-positive. Since the Euler characteristic of S2

is positive, this is a contradiction.
We now discuss how to bound the Euler characteristic by a contribution for

each face. Let F be a face of H. Consider (as a first step) the following sum:

c(F ) =
1

4
(the number of crossing vertices incident to F )

− 1

2
(the number of edges of F )

+ 1.

Note that, in this definition, we count edges and vertices with multiplicity. That
is to say, we count them going around the boundary of the face, so that, if we
revisit an edge or vertex, we count it again.

We have the following:

Lemma 4.1. Let (G+, G−) be a normal pair of graphs such that H is connected.
Then: χ(S2) = |V (G+)|+ |V (G−)|+

∑
F c(F ).

Proof. Each of the crossing vertices contributes +1 to the Euler characteristic
which is shared among the four faces that meet at it, and each edge contributes
−1 to the Euler characteristic, which is shared between the two faces it lies
on.

Since we want to bound χ(S2) by a sum over the faces, we must decide, for
each signed vertex, where to include it in the sum.

Suppose v is a positive vertex on face F , and that the two crossing vertices
of F adjacent to v on F are x and y. We say that v counts against F if x and
y are not incident to the same edge of G−. We make the similar definitions for
negative vertices.

Lemma 4.2. If (G+, G−) is a strongly normal pair of graphs, then every signed
vertex v counts against at least two faces.
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Proof. Suppose v is positive. There must be at least two different edges of
G− which are incident to crossing vertices of H at distance one from v, since
otherwise the single edge of G− which is incident to all the crossing vertices
at distance one from v would necessarily leave and re-enter the interior of the
same G+-face, contrary to our assumption of strong normality. Therefore, as
we visit in cyclic order the crossing vertices in H at distance one from v, which
edge from G− they intersect must change at least twice, so v counts against at
least two faces of H.

Let d(F ) = c(F ) + 1
2 (the number of signed vertices counting against F ).

Given the previous lemma, the following lemma is immediate:

Corollary 4.3. If (G+, G−) is a strongly normal pair of graphs, with H con-
nected, then χ(S2) ≤

∑
F d(F ).

We finish by showing that d(F ) ≤ 0 for all F , under the assumption that
the width of (G+, G−) is greater than two.

Lemma 4.4. Assume that (G+, G−) is a normal pair of graphs and has width
greater than two. Let F be a face of H. Then d(F ) ≤ 0.

Proof. Write e for the number of edges of F . Write x for the number of crossing
vertices. Now d(F ) ≤ 1 + x/4− e/2 + (e− x)/2 = (4− x)/4. We remark that x
counts the number of times that the sign of the edge changes as we travel along
the boundary of F and thus must be even. It is clear from the above that if F
has four or more crossing vertices then we are done.

If F has two or more signed vertices, then it must have four or more crossing
vertices. (Due to the contraction discussed in Section 2, signed vertices cannot
be at distance one, and since the signs of edges alternate, for signed vertices to
be at distance two, they would have to have opposite signs, and thus we would
have a path of length two.)

If F has no signed vertices, then again it must have at least four crossing
vertices (since the signs of the edges alternate, there are an even number of
edges, and two edges would mean that the corresponding edges of G+ and G−

cross twice).
If F has one signed vertex v, it may only have two crossing vertices. In this

case, however, F is a triangle, and v doesn’t count against F , so d(F ) = c(F ) =
0.
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