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ABSTRACT

Cyclonic vortices on the tropopause are characterized by compact structure and larger pressure, wind, and
temperature perturbations when compared to broader and weaker anticyclones. Neither the origin of these vortices
nor the reasons for the preferred asymmetries are completely understood; quasigeostrophic dynamics, in particular,
have cyclone–anticyclone symmetry.

In order to explore these and related problems, a novel small Rossby number approximation is introduced to
the primitive equations applied to a simple model of the tropopause in continuously stratified fluid. This model
resolves dynamics that give rise to vortical asymmetries, while retaining both the conceptual simplicity of
quasigeostrophic dynamics and the computational economy of two-dimensional flows. The model contains no
depth-independent (barotropic) flow, and thus may provide a useful comparison to two-dimensional flows dom-
inated by this flow component.

Solutions for random initial conditions (i.e., freely decaying turbulence) exhibit vortical asymmetries typical
of tropopause observations, with strong localized cyclones, and weaker diffuse anticyclones. Cyclones cluster
around a distinct length scale at a given time, whereas anticyclones do not. These results differ significantly
from previous studies of cyclone–anticyclone asymmetry in the shallow-water primitive equations and the
periodic balance equations. An important source of asymmetry in the present solutions is divergent flow associated
with frontogenesis and the forward cascade of tropopause potential temperature variance. This thermally direct
flow changes the mean potential temperature of the tropopause, selectively maintains anticyclonic filaments
relative to cyclonic filaments, and appears to promote the merger of anticyclones relative to cyclones.

1. Introduction

Observations of vortical disturbances in the extra-
tropics reveal structural and population asymmetries be-
tween cyclones and anticyclones from the mesoscale to
the planetary scale. An example of these asymmetries
is given by mesoscale undulations of the tropopause.
Tropopause vortices have typical radii of approximately
500 km, with cyclones characterized by larger pressure,
wind, and temperature perturbations when compared to
anticyclones (Thorpe 1986; Hakim 2000; Muraki and
Hakim 2001; Wirth 2001). Moreover, cyclones typically
have compact structure when compared with broader
anticyclones. Neither the origin of these vortices nor the
reasons for the preferred structural asymmetries are
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completely understood. Here we explore these problems
using a novel small Rossby number approximation to
the primitive equations (PE) applied to a simple model
of the tropopause. This model resolves the balanced
dynamics that give rise to vortical asymmetries, such as
vortex stretching of relative vorticity and divergence–
vorticity feedbacks associated with frontogenesis.
Moreover, the model retains the conceptual simplicity
of quasigeostrophic dynamics (QG) and the computa-
tional economy of two-dimensional dynamics.

One hypothesis for the origin of tropopause vortices
is derived from numerical solutions showing sponta-
neous vortex emergence from random initial conditions
in unforced quasi-two-dimensional flows (e.g., Mc-
Williams 1984; McWilliams 1990a,b; Bracco et al.
2000). Studies of random initial conditions are partic-
ularly useful with regard to cyclone–anticyclone asym-
metry because they allow preferred structures to be se-
lected by the dynamics. An indirect suggestion of the
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turbulence hypothesis is contained within Sanders’
(1988) observational study on the origin of tropopause
disturbances: ‘‘Evidently, the organization and growth
of the system out of the small-scale chaos of the vorticity
field is the most important process.’’ Although purely
two-dimensional (barotropic vorticity) dynamics may
lend support to a turbulent-cascade hypothesis for the
origin of vortices, these dynamics do not resolve cy-
clone–anticyclone asymmetry.

The simplest three-dimensional representation of the
tropopause in continuously stratified fluid consists of a
quasi-horizontal interface separating regions of homo-
geneous potential vorticity (PV) of differing magnitude;
small (large) values of PV are located on the tropo-
spheric (stratospheric) side of the interface (Rivest et
al. 1992; Juckes 1994; Muraki and Hakim 2001). The
QG approximation to this configuration results in a pro-
found simplification that parallels the dynamics of the
barotropic vorticity equation: the three dimensional flow
is modeled entirely by horizontal advection of potential
temperature on the interface (Blumen 1978; Juckes
1994; Held et al. 1995). Following Held et al. (1995),
we shall refer to this approximation as ‘‘surface qua-
sigeostrophy’’. An interesting attribute of surface qua-
sigeostrophy is the absence of depth-independent (bar-
otropic) flow; as such, it provides a useful comparison
to two-dimensional flows dominated by this flow com-
ponent. For completeness, we also note that because the
surface quasigeostrophic (sQG) assumption requires
zero PV gradients away from the interface, Rossby wave
propagation is confined to the interface, and baroclinic
instability is excluded.

Although sQG dynamics resolve the emergence of
vortices out of random initial conditions, they fail to
produce cyclone–anticyclone asymmetry. Here, we al-
low for cyclone–anticyclone asymmetry by extending
sQG by one order in Rossby number (‘‘sQG11’’) as in
Muraki et al. (1999), which includes additional dynam-
ics such as ageostrophic advections, stretching and tilt-
ing of relative vorticity, and gradient-wind effects (cen-
tripetal accelerations). Although the model is applied
here to specific problems related to the tropopause, we
emphasize that it applies to a more general class of
problems characterized by balanced dynamics and uni-
form potential vorticity.

Cyclone–anticyclone asymmetry and vortex emer-
gence from random initial conditions have also been
explored numerically for other dynamical systems more
complete than QG. For example, Cushman-Roisin and
Tang (1990) observed a strong bias for anticyclones in
a generalized geostrophic model. A subsequent study
by Polvani et al. (1994) using the shallow-water PE also
found that anticyclones were the preferred vortical struc-
tures. A similar result has been found for three-dimen-
sionally periodic solutions of the balance equations
(Yavneh et al. 1997). These results stand in contrast to
the observed preference for tropopause cyclones, and
motivate the present investigation into the importance

of PV dynamics concentrated at an interface as com-
pared to deep distributions over a layer.

A representative sample of the main results to be
documented in this paper is given in Fig. 1. Because
the solutions decay away from the interface, tropopause
dynamics (downward decay) may also be modeled as
surface dynamics (upward decay) with the only differ-
ence being that cyclones are associated with cold (warm)
air on the tropopause (surface). Here and for the re-
mainder of the paper we move from the tropopause to
the surface. A random distribution of surface potential
temperature (Fig. 1a) rapidly evolves into a field of
coherent vortices and a region between the vortices
filled by incoherent warm and cold filaments (Figs. 1b–
d). By t 5 1000 (nondimensional time units), the sQG11

solution exhibits distinct cyclone–anticyclone asym-
metries in both vortex population number and structure
that are absent in the sQG solution (cf. Figs. 1c,d). In
terms of population number, cyclones (warm spots) ap-
pear to cluster around a distinct length scale, whereas
anticyclones (cold spots) do not. In terms of vortex
structure, cyclones possess a ‘‘plateau’’ structure with
sharply defined edges, whereas anticyclones posses
broadly distributed structure with poorly defined edges
(Fig. 1c). Another striking property of the sQG11 so-
lution is the blue background, which indicates a mean
cooling of the surface has occurred (Figs. 1b,c); the
cooling rate is greatest at early times, and then decays
slowly with time (Fig. 2a). In the sQG11 potential tem-
perature probability density function (PDF), surface
cooling appears as a shifted peak with a bias toward
cold values for small potential temperature, relative to
the sQG PDF (Fig. 2b). As we will show, surface cool-
ing is due to divergence–vorticity feedbacks associated
with frontogenesis, such that over time, warm air rises
and cold air sinks. This realistic feedback is also crucial
to the vortex asymmetries, and is absent in two-dimen-
sional and shallow-water dynamics.

The remainder of the paper is organized as follows.
Section 2 provides a brief background discussion of
quasi-two-dimensional turbulence relevant to the pre-
sent work. Section 3 is devoted to defining the new
surface model, sQG11, along with a description of the
numerical algorithm. Novel aspects of the solution
shown in Fig. 1—surface cooling and cyclone–anticy-
clone asymmetries—are documented in sections 4 and
5, respectively. A summary is given in section 6, along
with several hypotheses to be tested in future research.

2. Background on quasi-two-dimensional
turbulence

This section is dedicated to providing a brief back-
ground review of certain aspects of quasi-two-dimen-
sional turbulence as they apply to the present work.
Turbulent flows are dominated by nonlinear (inertia)
dynamics, significant vorticity, and rapid mixing of pas-
sive tracers (e.g., Salmon 1998, section 4.5). An im-
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FIG. 1. Surface potential temperature evolution for numerical solutions of sQG11 [panels (b) and (c)] and sQG [panel (d)] freely decaying
turbulence. The random initial condition shown in (a) evolves into a field of vortices and filaments by t 5 200 (b). By t 5 1000, cyclone–
anticyclone asymmetries and surface cooling are prominent in the sQG11 solution (c) and are absent in the sQG solution (d). All units are
nondimensional, and the Rossby number (e) is 0.1 for the sQG11 solution.

portant property of nonlinear dynamics is a propensity
to spectrally scatter fluid properties, such as energy and
enstrophy, in preferred directions (e.g., to larger or
smaller scales). At length scales well removed from sig-
nificant forcing and dissipation, this nonlinear scattering
may take the form of statistically steady cascades. In
three-dimensional turbulence, for example, energy cas-
cades toward shorter length scales on the way to mo-
lecular dissipation.

Two-dimensional turbulence differs from three-di-

mensional turbulence because it conserves enstrophy
(for weak dissipation) and thus supports two cascades:
an upscale cascade of energy, and a downscale cascade
of enstrophy. A kinematic explanation for the downscale
cascade is formed around the fact that the area contained
within closed contours of vorticity is conserved, so that
vorticity gradients increase as patches of fluid inevitably
distort from axisymmetry. For statistically steady cas-
cades, the energy spectrum has a k23 power law for the
downscale enstrophy cascade, and a k25/3 power law for
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FIG. 2. (a) Mean surface potential temperature s as a function ofu
nondimensional time. Dashed lines show 61 ensemble standard de-
viation about the ensemble mean (bold line). (b) Potential temperature
PDF at t 5 1000 for sQG11 (thick line) and sQG (thin line). Vertical
lines show 61 ensemble standard deviation around the ensemble
mean.

FIG. 3. Ensemble-mean surface potential temperature variance
spectra. The sQG curve (dashed line) has been displaced from the
sQG11 curve (solid line) for clarity. Thin vertical lines show 61
ensemble standard deviation around the ensemble mean, and lines
with slopes of 25/3 and 21 are provided for reference. The spectral
peak in the initial condition is denoted by the bold arrow.

the upscale energy cascade, where k is the total wave-
number (e.g., Salmon 1998, section 4.9).

Charney (1971) asserts that the two-dimensional in-
ertial-range predictions also apply to unbounded three-
dimensional QG dynamics when enstrophy is replaced
by potential enstrophy; that is, PV cascades to small
scales. The effect of rigid horizontal boundaries in the
QG system has been studied by Blumen (1978), Juckes
(1994), and Held et al. (1995) for uniform PV above a
flat boundary with nonuniform potential temperature
distribution (i.e., the sQG system). If dissipation is
weak, boundary potential temperature variance cascades
downscale with a k25/3 spectrum for equilibrium con-
ditions. This cascade is analogous to the enstrophy cas-
cade of two-dimensional turbulence, and is character-
ized by increasing potential temperature gradients as
material lines are deformed and elongated. The upscale

energy cascade has a k21 spectrum in potential temper-
ature variance.

Figure 3 shows the ensemble-mean potential temper-
ature variance spectrum for sQG and sQG11 solutions at
t 5 1000. The spectra do not match the k21 and k25/3

power laws because these freely decaying (unforced) sim-
ulations do not achieve statistical equilibrium. Further-
more, we note that steeper spectral slopes in the forward
cascades of turbulent flows are also associated with the
emergence of highly organized and coherent vortical
structures that disrupt the cascades (e.g., Lumley 1990).
In quasi-two-dimensional (i.e., two-dimensional QG
and sQG) freely decaying turbulence, these vortices
emerge spontaneously from random initial conditions,
and represent patches of organized vorticity within a
field of disorganized, thin, filaments of vorticity (e.g.,
McWilliams 1984). Vortices of like sign typically
merge, producing larger vortices that then undergo an
axisymmetrization process where filaments are shed and
dissipated outside a persistent axisymmetric vortex core.
The generation and dissipation of filaments represents
the forward enstrophy cascade to dissipation scales,
whereas the scale increase of the vortices is a manifes-
tation of the upscale energy cascade.

Vortex emergence and evolution properties for sQG
turbulence are qualitatively similar to those for two-
dimensional turbulence, although they have not been
studied as extensively (Held et al. 1995). One important
distinction is that sQG filaments tend toward instability
as they are thinned (Juckes 1995), which is not observed
to occur in two-dimensional turbulence. Held et al.
(1995) note that the instability growth rate is set by the
magnitude of the filament vorticity, which remains con-
stant for two-dimensional filaments and increases with-
out bound for thinning potential temperature filaments.
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An additional distinction is that the inversion from po-
tential temperature to streamfunction is more local than
the inversion from vorticity to streamfunction, so that
vortex interactions decrease more rapidly with distance
for sQG dynamics.

Changing the sign of the initial condition in two-
dimensional, QG, and sQG turbulence simply changes
the sign of the solution. This property results in vortices
and filaments that are symmetric; there is no dynamical
distinction between cyclones and anticyclones. This
symmetry is broken by systems that retain dynamically
active divergent flow or PV inversions more accurate
than QG, such as the shallow-water PE and the balance
equations. Specifically, Polvani et al. (1994) find that
anticyclones are preferred over cyclones in shallow-wa-
ter flow as the Froude number (ratio of fluid speed to
gravity-wave speed) increases. Yavneh et al. (1997)
show that anticyclones also dominate in three-dimen-
sional periodic f -plane simulations of the balance equa-
tions. In particular, anticyclones develop rapidly to larg-
er horizontal scales, as in shallow water, which allows
them to interact over deeper layers and vertically align
into columnar vortices faster than cyclones.

The strong bias for anticyclones in the shallow-water
PE and periodic balance equations stands in contrast to
the observed cyclonic bias at the tropopause. In order
to resolve this discrepancy, a new model that extends
sQG is proposed and applied to an idealized represen-
tation of the tropopause. The essential novel additions
to sQG dynamics are asymptotically consistent next-
order rotational and divergent winds. We anticipate that
the cascade of potential temperature variance to small
scales will provoke a divergent response that also affects
the rotational flow.

3. A new surface model: sQG11

We begin with a description of a new surface model
that is a balance approximation of the PE, followed by
a description of the numerical procedure and a discus-
sion on dissipation. The tropopause is approximated
here as an interface separating regions of homogeneous
PV of differing value (Rivest et al. 1992; Juckes 1994;
Muraki and Hakim 2001). Although in general the in-
terface position is a function of space and time, for
simplicity we shall take the interface to be a rigid surface
(equivalent to assuming infinite PV on one side of the
interface). Moreover, we ‘‘invert’’ the tropopause such
that disturbances decay upward rather than downward
from the the rigid interface; this choice merely reverses
the sign of warm and cold anomalies.

We are interested in balanced motions supported by
the Boussinesq, hydrostatic, f -plane, PE in the assumed
geometry. Balanced motions are defined here as those
that satisfy both balanced dynamics and a balance con-
dition, which renders the dynamics free of gravity waves
(Warn et al. 1995; Vallis 1996). Balanced dynamics may

be represented by the material conservation of Ertel PV
q in the interior (z . 0),

Dq
q5 D q, (1)

Dt

and potential temperature u on the rigid boundary (z 5
0),

sDu
u s5 D u . (2)

Dt

The perturbation PV is defined in terms of the primitive
variables (u, y, u) by

q 5 (y 2 u 1 u )x y z

1 e[(y 2 u )u 2 y u 1 u u ], (3)x y z z x z y

and u is a perturbation from a constant stratification
reference state. Subscripts denote partial derivatives, su-
perscript s indicates a surface value (z 5 0), Dq and Du

are dissipation operators, and

D ] ] ] ]
[ 1 u 1 y 1 e w (4)

Dt ]t ]x ]y ]z

is the material derivative for wind vector V 5 (u, y,
w). The vertical coordinate z is pseudoheight (Hoskins
and Bretherton 1972), and e is the Rossby number. All
variables have been nondimensionalized as in Pedlosky
(1987, chapter 6), with the exception that w is scaled
by an additional factor of e.

For homogeneous q, which we take to be zero, the
interior equation (1) is satisfied exactly. This condition
reduces the dynamics to (2) with w 5 0, that is, hori-
zontal advection of surface potential temperature. De-
spite a reduction to surface advection, the general prob-
lem is still three-dimensional, because the surface winds
(us, y s) are determined by a three-dimensional PV in-
version. Here we shall assume small e and treat the
balance condition asymptotically following the proce-
dure outlined in Muraki et al. (1999). The advecting
winds are then given asymptotically by

s s s0 s1 s0 s1 2(u , y ) 5 (u 1 eu , y 1 ey ) 1 O(e ). (5)

An overview of the principal results of the inversion
follows, with further details provided in appendix A.

The leading-order balance condition yields a standard
QG PV inversion for the leading-order geopotential F0:

0 0 0 0q 5 F 1 F 1 F 5 0;xx yy zz

0 sF (z 5 0) 5 u . (6)z

Taking a Fourier transform and choosing decay in the
upward direction, a solution is

sû (k, l)
0 2|K |zF̂ (k, l) 5 2 e , (7)

|K |

where hats denote spectral variables, k and l are x and
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y wavenumbers, and | K | 5 (k2 1 l2)1/2. Leading-order
(QG) winds are then determined by an inverse Fourier
transform of spectral winds given by (û0, 0) 5ŷ
(2ik 0, il 0). The sQG system is defined by (7) andˆ ˆF F
(2), when the advecting wind (us, y s) is approximated
by (us0, y s0) (Held et al. 1995; Juckes 1994). A note-
worthy attribute of this system is the dimensional re-
duction that allows the solution of a three-dimensional
flow by a two-dimensional computation.

The next-order balance condition yields corrected
winds (us0 1 eus1, y s0 1 ey s1) that, together with (2),
define the sQG11 system. For the present discussion,
two important aspects of the next-order calculation de-
serve mention here. First, the corrections have the re-
markable property that, despite the three-dimensional
nature of the inversion problem, (us1, y s1) are determined
entirely from a surface calculation based on us; this
again reduces the full three-dimensional calculation to
a surface problem. Second, although the leading-order
winds are strictly nondivergent, the corrections possess
both divergence and vorticity. The nondivergent cor-
rections include those due to (approximate) gradient-
wind balance, while the irrotational corrections are sec-
ondary circulations and vertical motion that are driven
by frontogenesis in the leading-order flow.

a. Numerics

The numerical solution method consists of two steps,
inversion and advection. Inversion involves recovering
us ; us0 1 eus1 and y s ; y s0 1 ey s1 from us, as described
above. These approximate winds are then used to advect
us in (2). We represent the dissipation operators by
eighth-order horizontal ‘‘hyperdiffusion’’ (e.g., Mc-
Williams 1984):

u q 8D 5 D 5 2n¹ ,H (8)

where 5 ]xx 1 ]yy. As discussed further in the sub-2¹H

sequent section, this representation for dissipation has
little connection to real physics in the PE, and is used
in computations to prevent the accumulation of energy
at the smallest scales.

Using the dissipation operator specified in (8), a Fou-
rier transform, F, of (2) gives the spectral form of the
governing equation that is solved numerically:

s s]û ]u ]u
s s 2 2 4 s5 F u 2 y 2 n (k 1 l ) û . (9)[ ]]t ]x ]y

In the numerical model, nonlinear terms in (9) are qua-
dratically dealiased to a resolution of 512 by 512 hor-
izontal wavenumbers, the Rossby number is e 5 0.1,
and hyperdiffusion is handled explicitly with n 5 1029.
Temporal discretization is by a third-order accurate Ad-
ams–Bashforth scheme (Durran 1999). An ensemble of
25 solutions is employed for both sQG and sQG11 com-
putations to ensure statistically robust results.

Initial conditions are constructed by first specifying

a 0 field, and then solving for next-order corrections.F̂
The 0 field is specified with random phase angles andF̂
amplitude given by (Polvani et al. 1994):

m /421|K |
0,sF̂ (k, l) [ , (10)

m /2(|K | 1 k )0

on a domain taken to be 2pk 0 square. This definition
for 0 gives a kinetic energy spectrum for surfaceF̂
flow peaked at wavenumber k 0 . To maintain the ki-
netic energy spectrum at next order, the inversions at
next order must have no wind corrections. Therefore,
the next-order inversions are performed with bound-
ary conditions that provide (us1 , y s1 ) 5 0, which forc-
es the corrections into the u s field. The initial field is
then normalized to have unit total kinetic energy and
zero mean potential temperature at z 5 0. Test so-
lutions for initial conditions in which the u s correc-
tions are chosen to be zero and the winds are corrected
show no qualitative difference from the control so-
lutions. Following Polvani et al. (1994), we set k 0 5
14 and m 5 25, which gives initial conditions such
as the one shown in Fig. 1a.

b. Role of dissipation

Some form of dissipation is required in the numerical
experiments to control the buildup of grid-scale features
associated with the forward cascade of us variance. Our
use of hyperdiffusion to dissipate both us and q follows
common practice in studies of quasi-two-dimensional
turbulence. The fact that q remains constant with such
dissipation is particularly useful here [and in sQG stud-
ies such as Held et al. (1995)], since the calculations
become effectively two-dimensional, and thus compu-
tationally tractable, only when q is constant.

However, for the PE, which sQG11 approximates,
most obvious forms of momentum and potential tem-
perature dissipation result in nonzero time tendency of
q even for q constant; that is, an initially uniform field
of q will develop spatial variations as a consequence of
the dissipation of momentum and potential temperature
(e.g., Herring et al. 1994). This effect can be ignored
at the level of QG theory1 but enters at next order in e.
Our solution procedure, which depends on the assump-
tion of constant q, neglects this dissipation contribution
to the time tendency of q.

The importance of this neglected PV to the long-term
behavior of the flow is an interesting question that de-
serves further investigation. Considering the approxi-
mations required to reduce the PE to other quasi-two-
dimensional systems (e.g., the shallow-water equations),
we suspect that neglecting some of the dissipative ef-
fects on PV is a comparatively minor simplification. Test
solutions for changes in the hyperdiffusion coefficient

1 The QG PV is linear, and if heat and momentum are dissipated
by diffusion (or hyperdiffusion), then QG PV is also diffused.
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FIG. 4. Average surface divergence (solid line) and deformation
(dashed line) at t 5 1000 as a function of perturbation surface po-
tential temperature us 2

s
(upper panel). These ensemble-meanu

curves represent averages over grid points for us 2
s

within 6.05u
of the central value given on the abscissa. The ensemble-mean PDF
for us 2

s
at t 5 1000 is shown in the lower panel. Thin solidu

vertical lines show 61 ensemble standard deviation around the en-
semble mean, and the thin dashed vertical line denotes the peak of
the us 2

s
PDF; note that this is a skewed distribution.u

by an order of magnitude showed no qualitative changes
to our primary conclusions. Moreover, the key mech-
anisms that generate asymmetries rely on advections by
the divergent flow component, which operate even in
the absence of dissipation.

4. Surface cooling

Surface cooling2 is one of the novel features of sQG11

turbulence shown in Figs. 1 and 2. This section further
documents surface cooling and provides a simple ex-
planation of why this phenomenon occurs. A useful
starting point is the equation governing the time ten-
dency of surface-mean potential temperature

s
, whichu

is obtained by area averaging (2) with (8) over the entire
surface:

s
]u

s5 [u = · V]. (11)H]t

Note that the evolution of
s
has no explicit dependenceu

on hyperdiffusion, and is conserved by the nondivergent
leading-order dynamics. However, the next-order dy-
namics support divergence, and net surface cooling oc-
curs when us and divergence are anticorrelated such that,
on average, warm regions contract relative to cold re-
gions.

Since surface divergence (convergence) is associated
with sinking (rising) air just above the surface, we con-
clude that surface cooling is related to rising warm air
and sinking cold air (thermally direct circulations). Con-
versely, surface warming is associated with thermally
indirect circulations, and appears to occur in vortex
cores (compare the sQG11 and sQG us PDFs for large
| us | in Fig. 2b). In our balanced model, these circu-
lations are due to frontogenesis, which is defined as an
increase in the magnitude of the horizontal potential
temperature gradient following fluid particles.

To understand why these circulations have a preferred
direction, recall from section 2 that the deformation of
potential temperature contours by the leading-order ve-
locity field leads to an increase in potential temperature
gradients; equivalently, the turbulence cascades poten-
tial temperature variance from large to small scales. To
maintain thermal wind balance, frontogenesis requires
an increase in the vertical shear and therefore the kinetic
energy. Since total energy is conserved, this increase in
kinetic energy is balanced by a decrease in potential
energy through warm air rising and cold air sinking.
Although this process occurs at leading order, the di-
vergent flow is diagnostic and does not advect; therefore
surface cooling cannot occur for sQG. At next order,
sQG11, divergent flow is dynamically active and may
change the area contained within potential temperature

2 Note that the cooling described here applies to the area-mean
potential temperature, not individual air parcels, and is a result of
adiabatic motion.

contours. Note that this process is consistent with the
conservation of potential temperature following fluid
particles because the increase in area associated with
surface cooling is associated with particles that sink onto
the surface. We proceed to test the hypothesis that the
main source of frontogenesis, and therefore surface
cooling, occurs in the filament field.

To test this hypothesis for surface cooling, we conduct
an analysis of kinematic quantities associated with surface
frontogenesis: divergence, ux 1 yy, and leading-order de-
formation magnitude [( 1 )2 1 ( 2 )2]1/2. As an0 0 0 0u y u yy x x y

aid in interpreting Fig. 4, we note that most vortices are
characterized by relatively large values of |us 2

s
| , whileu

most filaments are found where |us 2
s
| is relativelyu

small (cf. Fig. 1); hereafter, we take |us 2
s
| t 2 tou

represent the vortex field. The largest contributions to the
ensemble-mean total deformation magnitude occur in the
filament field near the PDF peak of us 2

s
. A divergenceu

dipole flanks the us 2
s
distribution peak, with divergenceu

(convergence) found in relatively cold (warm) air. We con-
clude that an asymmetry exists in the filament field due
to divergent circulations associated with frontogenesis
such that, on average, warm air rises away from the surface
and cold air sinks toward the surface.

Further evidence of this filament asymmetry is ap-
parent in PDFs of us 2

s
and vorticity at t 5 1000.u

The us 2
s

ensemble-mean PDF shows a cold bias inu
the filament field and a warm bias in the vortex field
(Fig. 5a). The sQG11 vorticity PDF (Fig. 5b) shows that
large values of cyclonic (anticyclonic) vorticity occur
more (less) frequently than in sQG, as one might expect
based on stretching of relative vorticity. Joint PDFs of
vorticity and us show that the large values of cyclonic



2412 VOLUME 59J O U R N A L O F T H E A T M O S P H E R I C S C I E N C E S

FIG. 5. Ensemble-mean PDFs for (a) surface potential temperature us 2
s
, and (b) vorticity and joint PDFs of surface potential temperatureu

us 2
s
, and vorticity for (c) sQG11 and (d) sQG. In (a) and (b), values for us 2

s
, 0 have been folded across the origin, with positiveu u

values given by thick solid lines and negative values given by thick dashed lines; the symmetric sQG curve is given by a thin solid line.
Thin vertical lines show 61 ensemble standard deviation around the ensemble mean. Contours in (c) and (d) are given in powers of 10,
with an innermost contour of 0.1.

vorticity occur in the vortex field and that the anticy-
clonic bias at small values of vorticity occurs in the
filament field (Figs. 5c,d).

These results demonstrate the existence of a pro-
nounced cold anticyclonic bias in the sQG11 filament
field; this bias has no counterpart in the symmetric
filament fields of two-dimensional, QG, and sQG tur-
bulence. The key element that was previously miss-
ing, but that is included in sQG11 , is advection by
the divergent flow. Thinning warm filaments are ac-
companied by rising motion and convergence along
the filament, which accelerates the thinning of the
filament, while the situation is reversed for cold fil-

aments where divergence along the filament slows the
thinning.3 As a result of this asymmetry, warm fila-
ments reach small scales sooner and are dissipated
more rapidly, so that the observed filaments are pre-
dominantly cold. We hypothesize that this basic asym-
metry also plays an important role in determining vor-
tex structure and population asymmetries, which are
documented in the following section.

3 We note that because the divergent flow is O(e) it cannot over-
whelm the O(1) strain—cold filaments do not expand. A similar result
can be derived from semigeostrophic solutions of two-dimensional
filaments in deformation (Davies and Müller 1988).
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FIG. 6. Vortex census data at t 5 1000 showing (a), (b) ensemble-mean vortex amplitude and (c), (d) radius; note that vortex amplitude
is defined relative to

s
. The sQG11 solutions are given in (a) and (c), and the sQG solutions are given in (b) and (d). Thin vertical linesu

show 61 ensemble standard deviation around the ensemble mean, which is given by the bold solid line.

5. Cyclone–anticyclone asymmetries

Figures 1b and 1c exhibit asymmetries between cy-
clonic and anticyclonic vortices in terms of both pop-
ulation number and structure. Cyclones appear to cluster
around a distinct size at this time, whereas anticyclones
do not, and cyclones tend to have a plateau-like struc-
ture, whereas anticyclones tend to have a broad, sprawl-
ing, structure. This section is devoted to quantifying
these qualitative impressions.

Vortices are identified by a census algorithm that is
described in appendix B. For each vortex, the algorithm
objectively determines vortex amplitude (us 2

s
ex-u

tremum), and major- and minor-axis length scales. Here-
after, radius refers to the vortex major-axis length scale.
Vortex population statistics at t 5 1000 are discussed

first, followed by an analysis of the statistics over time,
and finally an analysis of vortex structure.

a. Vortex census

Histograms of sQG11 ensemble-mean vortex ampli-
tude show that cyclones tend to be stronger than anti-
cyclones, with a mean of 3.27 as compared to 21.5 for
anticyclones (Fig. 6a). Anticyclones exhibit a single
peak near us 2

s
5 21, whereas cyclones exhibit au

bimodal distribution with a primary peak near us 2
s

u
5 4. Both the anticyclone peak and the secondary cy-
clone peak near us 2

s
5 1 are due to thin-filamentu

instability. We suspect that the observation of fewer
cyclones relative to anticyclones for small scales is due
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FIG. 7. Vortex radius as a function of amplitude us 2
s

for (a)u
sQG11 and (b) sQG solutions at t 5 1000. Each vortex is represented
by a dot, and the solid lines are constant-density contours (0.005,
0.01, 0.02, 0.03) of the joint PDF.

FIG. 8. Vortex number as a function of time. The thin dashed line
represents sQG vortices, the thick solid line represents sQG11 cy-
clones, and the thick dashed line represents sQG11 anticyclones. A
solid line with slope 20.55 is provided for reference.

to the shorter lifespan of warm filaments in sQG11 strain.
The symmetric sQG amplitude histogram also exhibits
two peaks for both cyclones and anticyclones, and both
distributions are dominated by vortices with small val-
ues of | us 2

s
| (Fig. 6b).u

The sQG11 anticyclones exhibit no preferred length
scale, but rather show an exponential decrease in num-
ber away from a peak at small scales; the tail of the
distribution reaches to values more than twice as large
as for cyclones (Fig. 6c). Also, the sQG11 cyclones ex-
hibit two peaks, with one near r ø 3 and another near
r ø 7. The symmetric sQG vortex-radius plot is sharply

peaked at small scales with a minor secondary peak near
| r | ø 13. The primary peak reflects vortex generation
at small scales due to filamentary instability, whereas
the secondary peak reflects the upscale cascade due to
vortex merger.

Plots of sQG11 vortex radius as a function of ampli-
tude show that the anticyclonic vortex distribution peaks
at small amplitudes and small radii with a long tail to
large radii at modestly larger amplitude (Fig. 7a). In
contrast, cyclones tend to cluster around (us 2

s
ø 4,u

r ø 7) with very few cyclones at larger radii. Fewer
cyclones occur near the second peak at small amplitude
and radius relative to the anticyclone distribution. The
asymmetric sQG11 vortex amplitude-radius relationship
is steeper (shallower) for anticyclones (cyclones) when
compared to the sQG relationship (Fig. 7b). sQG vor-
tices cascade to large scales along an approximately
parabolic amplitude–radius relationship, which must as-
ymptote to the us 2

s
extrema in the initial conditions,u

because us is conserved following fluid particles.
These instantaneous results suggest that sQG11 an-

ticyclones cascade rapidly to larger scale, whereas
sQG11 cyclones appear to ‘‘cluster’’ around a distinct
scale. Further evidence for this tendency is given in Fig.
8, which shows the total number of cyclones and an-
ticyclones as a function of time. Relative to the sQG
curve, the number of sQG11 cyclones (anticyclones) de-
creases less (more) with time. Although filamentary in-
stability also contributes to variations in the number of
vortices, the asymmetries shown in Figs. 6–8 suggest a
difference in how cyclones and anticyclones interact and
merge. The summary section provides additional anal-
ysis of this vortex merger asymmetry, and a hypothe-
sized frontogenesis mechanism to explain it.

Figure 8 also shows that the total number of sQG
vortices approximates a t20.55 power law. Similar laws
have been observed for two-dimensional (McWilliams
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FIG. 9. The t 5 1000 ensemble-mean PDFs for magnitude of the
horizontal gradient of surface potential temperature, conditioned on
| us 2

s
| . 1. Cyclonic sQG11 (positive) values are given by thicku

solid lines, and anticyclonic sQG11 (negative) values are given by
thick dashed lines; the symmetric sQG curve is given by a thin solid
line. Short vertical lines show 61 ensemble standard deviation around
the ensemble mean.

FIG. 10. Vertical component of relative vorticity at t 5 1000 for
(a) sQG11 and (b) sQG solutions. The vorticity shown in (b) is lead-
ing-order only, whereas in (a) the vorticity is correct to O(e). Here,
(a) corresponds to the upper left quadrant of Fig. 1c, and (b) cor-
responds to the lower left quadrant of Fig. 1d.

1990b; Bracco et al. 2000) and three-dimensional-pe-
riodic QG turbulence (McWilliams 1990a; McWilliams
et al. 1999), but with steeper power laws of t20.72 and
t21.25, respectively. A slower decrease in vortex number
for sQG dynamics relative to two-dimensional dynamics
is consistent with the observation that two-dimensional
vortices have a larger range of influence, which may
lead to interaction and merger with other vortices, when
compared to sQG vortices. The source of this larger
influence may be attributed to the slower spatial decay
of the ln(r) two-dimensional Green’s function, when
compared to r21 for the sQG Green’s function (Held et
al. 1995). Because the r21 Green’s function also applies
to three-dimensional QG dynamics, the source of the
difference may be more closely related to surface-based
dynamics as compared to deep, barotropic dynamics.
Conclusions drawn from Fig. 8 must again be tempered
by the caveat that vortex number is changed by fila-
mentary instability, which is largely absent from strictly
two-dimensional flows.

b. Vortex structure

A structural asymmetry apparent in Fig. 1c is the
tendency for compact cyclones with sharp edges and
broad anticyclones with diffuse edges. An objective
measure of this asymmetry is provided by PDFs of cy-
clonic and anticyclonic | ¹Hus | conditioned on | us 2

s
| . 1 (Fig. 9). The sQG11 plot shows that strongeru

gradients are found in warm air (cyclones), with gra-
dients in cold air (anticyclones) comparable to the sQG
result.

A plot of sQG11 vorticity corresponding to the upper-
left quadrant of Fig. 1c shows that, as expected, there
is considerably more small-scale structure in the vor-

ticity field when compared to the us field (Fig. 10a).
The vortex field shows larger vorticity values near cy-
clones compared to anticyclones. Both cyclones and an-
ticyclones exhibit annular-like vorticity structure in the
vortex core, and a tendency toward compensation, with
a ring of opposite-sign vorticity surrounding the core;
these properties are most noticeable for sQG11 cyclones.
Another interesting property is the tendency for small
anticyclones to become trapped as satellites with nearly
constant orbits around cyclones [see, e.g., (x, y) 5 (240,
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FIG. 11. Schematic illustration of the divergent-flow response to
(a) cold and (b) warm filaments in deformation. Black arrows show
the ambient deformation that acts to thin the filaments (thick gray
lines) and provoke the divergent response in the vertical plane normal
to the filaments (arrow heads and arrow tails). The net affect of the
divergent motions, given by the gray arrows, is to accelerate the
contraction of warm filaments relative to cold filaments.

10) in Fig. 10a]. Such configurations are observed to
last for hundreds of time units (not shown), and stand
in contrast to the two-dimensional tendency for irre-
versible deformation of vortices of unequal amplitude
in close proximity4 (e.g., Guinn and Schubert 1993).

The absence of stretching of relative vorticity for sQG
dynamics is apparent in the sQG vorticity plot, which
shows notably smaller magnitude vorticity relative to
sQG11 (Fig. 10b; cf. Fig. 5b). The sQG vortices are also
compensated, but with less clearly defined rings of vor-
ticity when compared to sQG11 cyclones because the
edges of sQG cyclones are not as sharply defined. More-
over, most sQG vortices are nearly axisymmetric,
whereas many sQG11 cyclones appear to be elliptical.
Last, we note that composite averages of cyclones and
anticyclones were not helpful in quantifying structural
asymmetries because averaging tends to smooth out the
sharp structures that vary in location from vortex to
vortex.

6. Summary and hypotheses

We introduce a new model, sQG11, which is devised
to study the dynamics of continuously stratified fluids
characterized by balanced dynamics, uniform potential
vorticity, and a rigid boundary. The model builds as-
ymptotically upon surface QG dynamics (e.g., Held et
al. 1995) by including next-order corrections to the lead-
ing-order nondivergent velocity field (Muraki et al.
1999). This approach retains conceptually useful QG
concepts while also allowing the solution of three-di-
mensional dynamics with two-dimensional computa-
tional effort. We have applied the sQG11 model to the
problem of cyclone–anticyclone asymmetry, in order to
investigate the observed bias for tropopause cyclones.

We use unbiased random initial conditions, which al-
lows the dynamics to select asymmetries; this is the
classic initial-value problem known as ‘‘freely decay-
ing’’ turbulence. Vortices emerge from the turbulence
as in two-dimensional simulations; however, there is a
distinct dynamical asymmetry favoring strong, compact
cyclones and weak, broad anticyclones. Cyclone size
clusters around a distinct length scale at a given time,
whereas anticyclones do not, and reach scales much
larger than cyclones.

The results suggest that, as surface potential temper-
ature cascades to small scales, frontogenesis produces
divergence that is the source for several asymmetries.
As Fig. 11 illustrates, a basic asymmetry occurs at the
level of potential temperature filaments, where diver-
gence hastens the contraction of warm filaments and
slows the contraction of cold filaments. An example of
this asymmetry is given in Figs. 12a and 12b, which
show that warm filaments are associated with conver-
gence and cold filaments are associated with divergence.

4 Vortices of opposite sign and comparable amplitude often merge
to form vortex dipoles.

This asymmetry in the divergent flow produces surface
cooling as cold air sinks and warm air rises in thermally
direct circulations; the sense of these circulations, and
of the asymmetry, is determined by the fact that tur-
bulent flows stretch material lines and thus increase
| ¹Hus | (frontogenesis). A fundamental result of sQG11

frontogenetical circulations is a reduced center of mass
in the fluid. This realistic effect is not captured by the
QG and shallow-water equations.

We hypothesize that this divergent-flow asymmetry
is the source of vortex population and structural asym-
metries. For example, as illustrated in Fig. 12c, when
cyclonic vortices approach one another and are close to
merging, the relatively cold patch of fluid that is pinched
between them produces divergence, which opposes
merger. Just the reverse happens for merging anticy-
clones, which pinch a warm patch of fluid that con-
verges, favoring merger (Fig. 12d). This merger asym-
metry encourages anticyclones to build to larger scales,
whereas cyclones are discouraged and tend to accu-
mulate around a particular length scale at a given time.
A theory that can predict the preferred cyclone scale as
a function of time for a given Rossby number and initial
condition remains an open and interesting problem for
future work.

We further hypothesize that additional structural
asymmetries are due to at least three effects. First, sur-
face cooling and conservation of us in the vortex cores
imply that cyclones strengthen relative to anticyclones
when their amplitude is measured against the mean (us

2
s
). Second, vortices persistently sweep cold fila-u

ments near their periphery, which leads to broad anti-
cyclones and compact ‘‘plateau-like’’ cyclones. Third,
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FIG. 12. Surface potential temperature (colors) and divergence (black lines) for examples of (a) warm filaments, (b) cold filaments, (c)
merging cyclones, and (d) merging anticyclones. Solid lines show divergence, and dashed lines show convergence.

these structural asymmetries may persist when per-
turbed, because they imply that vortex Rossby waves
(e.g., Guinn and Schubert 1993; Montgomery and Kal-
lenbach 1997) are trapped at the edge of cyclones, which
gives cyclones an elliptical appearance as these waves
propagate around the vortex. In contrast, broad anti-
cyclones support radial propagation and, ultimately,
these waves break at the edge of the vortex, further
contributing to broad structure.

Future work is needed to address these hypotheses,
and also to link this work with earlier studies showing
anticyclone dominance in flows strongly influenced by
barotropic dynamics; sQG11 dynamics represent a bar-
oclinic two-dimensional limit in that they contain no
barotropic (depth independent) velocity component. For
example, Polvani et al. (1994) find that anticyclones are
preferred over cyclones in shallow-water flow as the
Froude number (ratio of fluid speed to gravity-wave
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speed) increases. They attribute this asymmetry to the
smaller (larger) Rossby deformation radius for cyclones
(anticyclones), which allows anticyclones to interact/
merge more readily than cyclones. Arai and Yamagata
(1994) show that isolated elliptical cyclones tend to eject
more filamentary material during axisymmetrization
when compared to anticyclones, and elliptical cyclones
are also more prone to splitting. The anticyclone bias
in shallow-water flow is strengthened on the b plane
due to a dispersion–nonlinearity balance that is not at-
tainable to cyclones (e.g., Williams 1996). Yavneh et
al. (1997) show that anticyclones also dominate in three-
dimensional periodic f plane simulations of the balance
equations. In particular, anticyclones develop rapidly to
larger horizontal scales (as in shallow water), which
allows them to interact over deeper layers and collect
into columnar vortices faster than cyclones.

A natural extension of the present work that links
with studies of barotropically dominated flows involves
the introduction of a second horizontal boundary; this
addition allows barotropic flow to develop naturally, and
promotes columnar organization on the largest scales.
Because anticyclones build to larger scales faster than
cyclones, we anticipate that anticyclones will be first to
engage a partner on the opposing boundary, producing
a barotropic structure; the vortex horizontal length scale
for which this process begins is expected to depend on
boundary separation. In the limit of infinite boundary
separation, sQG11 dynamics are recovered. For finite
boundary separation larger scales will tend toward bar-
otropy; however, there will always be scales short
enough such that the opposing boundary is never felt
and sQG11 dynamics prevail. Exploration of these and
similar problems should promote deeper understanding
of the various regimes of cyclone–anticyclone asym-
metry, and the role of barotropic motions in continu-
ously stratified fluids.
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APPENDIX A

Next-Order PV Inversion

Because the general QG11 model is thoroughly dis-
cussed in Muraki et al. (1999), only the key results and
simplifications relevant to the sQG11 PV inversion are
summarized here. The QG11 approach replaces primi-
tive variables (u, y, u) with potentials (F, F, G), where

y 5 F 2 G , 2u 5 F 1 F ,x z y z

u 5 F 1 G 2 F , (A1)z x y

and the continuity equation implies that

ew 5 F 1 G .x y (A2)

Next-order corrections in Rossby number are incorpo-
rated by expanding the potentials as the perturbation
series

0 1 1 1F ; F 1 eF , F ; eF , G ; eG . (A3)

For balanced states, these potentials are obtained by
the solution of three-dimensional Poisson equations,
subject to appropriate boundary conditions:

s
2 0 0s s¹ F 5 0, F 5 u 2 u ;z

2 1 0 0 1s¹ F 5 2J(F , F ), F 5 0;z x

2 1 0 0 1s¹ G 5 2J(F , F ), G 5 0;z y

s
2 1 0 2 1s¹ F 5 |=F | , F ; u ; (A4)z z

where uniform (zero) PV has been assumed, and ¹2 5
]xx 1 ]yy 1 ]zz. The first equation in (A4) has solution
(7), which defines winds for sQG dynamics. Although
the correction potentials (F1, F 1, G1) are determined by
Poisson inversions of three-dimensional inhomoge-
neous terms, we demonstrate the following surprising
reduction to Laplace (surface) inversions. Using the fact
that the inhomogeneous terms for (F1, F 1, G1) involve
only F0, which satisfies a Laplace problem, we may
specify the following exact particular solutions:

1 0 0 1 1 0 0 1˜ ˜F 5 F F 1 F , G 5 2F F 1 G ,y z x z

1
1 0 0 1˜F 5 F F 1 F . (A5)z z2

The homogeneous terms (F̃1, G̃1, 1) satisfy a LaplaceF̃
problem, with boundary conditions that allow (F 1, G1,
F1) to satisfy (A4):

2 1 1s 0 0˜ ˜¹ F 5 0, F 5 2F F ;y z

2 1 1s 0 0˜ ˜¹ G 5 0, G 5 F F ;x z

s
2 1 1s 0 0˜ ˜¹ F 5 0, F ; u 2 F F . (A6)z z zz

Next-order surface winds may then be evaluated from

1 0 0 21 0 0F 5 (F F ) 2 F {2|K |F [F F ]},z y z z y z

1 0 0 21 0 0G 5 2(F F ) 1 F {2|K |F [F F ]},z x z z x z

ik s
1 0 0 21 0 0F 5 F F 2 F F [u 2 F F ] ,x xz z z zz5 62|K |

il s
1 0 0 21 0 0F 5 F F 2 F F [u 2 F F ] , (A7)y yz z z zz5 62|K |

where F21 is the inverse Fourier transform. Note that
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the (k, l) 5 (0, 0) contribution to , and is O(e2)1 1F Fx y

and is neglected.

APPENDIX B

Vortex Census Algorithm

Vortices are defined in terms of grid point us 2
s
,u

since they are clearly distinguished from the background
turbulence in that field. The vortex census algorithm
proceeds through the following steps.

1) At each grid point (i, j), determine whether us(i, j)
. , where is a lower bound that is useful ins su umin min

rejecting local maxima associated with filaments.
2) Determine whether grid point (i, j) represents a local

maximum by searching outward along radial arms.
The radial arms are separated azimuthally by 458, so
no interpolation is required. If any grid point (m, n)
along any radial arm satisfies us(m, n) . us(i, j),
point (i, j) is rejected. The search along each arm
stops successfully when us(m, n) , .sucrit

An additional filament filter is derived from the
radial arms by computing the distance (‘‘diameter’’)
along four pairs of arms, where the pairs are selected
as (2x, 2y) reflections through the vortex center; in
the case of a circular vortex, these values are equal
to the diameter. If any of the four diameter values
falls below the threshold dmin, then the vortex is re-
jected.

3) The vortex centroid ( , ) is determined by first es-x y
tablishing a local mask that defines the vortex as us

. . The mask is established by spiraling outwardsucrit

from (i, j) and setting all points where us(m, n) ,
to zero; if the point adjacent to (m, n) and closersucrit

to (i, j) is zero, (m, n) is set to zero. The vortex
centroid is then calculated by

sx(m, n)u (m, n)O
m,nx 5 ,

su (m, n)O
m,n

sy(m, n)u (m, n)O
m,ny 5 . (B1)

su (m, n)O
m,n

Merging vortices are filtered by requiring that {[x
2 x(i, j)]2 1 [ 2 y(i, j)]2}1/2 , rminor/4, where rminory
is the vortex minor-axis length scale as defined sub-
sequently.

4) The vortex major- and minor-axis length scales are
determined as moments about the centroid. A 2 3
N deviation matrix X is constructed for the N grid
points defining the vortex. Entries in the first and
second row of X are given by us(m, n)1/2[x(i, j) 2

] and us(m, n)1/2[y(m, n) 2 ], respectively. The 2x y
3 2 covariance matrix is defined as

21

s TS 5 u (m, n) XX . (B2)O[ ]m,n

The vortex major- and minor-axis length scales are
defined in terms of the scaled eigenvalues of S. For
example, the major axis is given in terms of the
leading eigenvalue, l1, as (2l1)1/2.

The parameters used in this study are: 5 0.5,sumin

5 max[(us(i, j)e22, 0.4)], and dmin 5 2.0. Thesesucrit

values were determined empirically, and appear to
apply over a wide range of numerical resolution.
Moreover, this tuning of the algorithm is conser-
vative in that we noticed it would occasionally omit
a small, weak vortex, but it would never include a
filament.

REFERENCES

Arai, M., and T. Yamagata, 1994: Asymmetric evolution of eddies
in rotating shallow water. Chaos, 4, 163–175.

Blumen, W., 1978: Uniform potential vorticity flow: Part 1. Theory
of wave interactions and two-dimensional turbulence. J. Atmos.
Sci., 35, 774–789.

Bracco, A., J. C. McWilliams, G. Murante, A. Provenzale, and J. B.
Weiss, 2000: Revisiting freely decaying two-dimensional tur-
bulence at millennial resolution. Phys. Fluids, 12, 2931–2941.

Charney, J. G., 1971: Geostrophic turbulence. J. Atmos. Sci., 28,
1087–1094.

Cushman-Roisin, B., and B. Tang, 1990: Geostrophic turbulence and
emergence of eddies beyond the radius of deformation. J. Phys.
Oceanogr., 20, 97–113.

Davies, H. C., and J. C. Müller, 1988: Detailed description of de-
formation-induced semi-geostrophic frontogenesis. Quart. J.
Roy. Meteor. Soc., 114, 1201–1219.

Durran, D. R., 1999: Numerical Methods for Wave Equations in Geo-
physical Fluid Dynamics. Springer-Verlag, 465 pp.

Guinn, T. A., and W. H. Schubert, 1993: Hurricane spiral bands. J.
Atmos. Sci., 50, 3380–3403.

Hakim, G. J., 2000: Climatology of coherent structures on the ex-
tratropical tropopause. Mon. Wea. Rev., 128, 385–406.

Held, I. M., R. T. Pierrehumbert, S. T. Garner, and K. L. Swanson, 1995:
Surface quasi-geostrophic dynamics. J. Fluid Mech., 282, 1–20.

Herring, J. R., R. M. Kerr, and R. Rotunno, 1994: Ertel’s potential
vorticity in unstratified turbulence. J. Atmos. Sci., 51, 35–47.

Hoskins, B. J., and F. P. Bretherton, 1972: Atmospheric frontogenesis
models: Mathematical formulation and solution. J. Atmos. Sci.,
29, 11–37.

Juckes, M., 1994: Quasigeostrophic dynamics of the tropopause. J.
Atmos. Sci., 51, 2756–2768.

——, 1995: Instability of surface and upper-tropospheric shear lines.
J. Atmos. Sci., 52, 3247–3262.

Lumley, J. L., 1990: Whither Turbulence? Turbulence at the Cross-
roads. Springer-Verlag, 535 pp.

McWilliams, J. C., 1984: The emergence of isolated coherent vortices
in turbulent flow. J. Fluid Mech., 146, 21–43.

——, 1990a: The vortices of geostrophic turbulence. J. Fluid Mech.,
219, 387–404.

——, 1990b: The vortices of two-dimensional turbulence. J. Fluid
Mech., 219, 361–385.

——, J. B. Weiss, and I. Yavneh, 1999: The vortices of homogeneous
geostrophic turbulence. J. Fluid Mech., 401, 1–26.

Montgomery, M. T., and R. J. Kallenbach, 1997: A theory for vortex
Rossby-waves and its application to spiral bands and intensity
changes in hurricanes. Quart. J. Roy. Meteor. Soc., 123, 435–465.



2420 VOLUME 59J O U R N A L O F T H E A T M O S P H E R I C S C I E N C E S

Muraki, D. J., and G. J. Hakim, 2001: Balanced asymmetries of waves
on the tropopause. J. Atmos. Sci., 58, 237–252.

——, C. Snyder, and R. Rotunno, 1999: The next-order corrections
to quasigeostrophic theory. J. Atmos. Sci., 56, 1547–1560.

Pedlosky, J., 1987: Geophysical Fluid Dynamics. 2d ed. Springer-
Verlag, 710 pp.

Polvani, L. M., J. C. McWilliams, M. A. Spall, and R. Ford, 1994:
The coherent structures of shallow-water turbulence: Deforma-
tion-radius effects, cyclone/anticyclone asymmetry and gravity-
wave generation. Chaos, 4, 177–186.

Rivest, C., C. A. Davis, and B. F. Farrell, 1992: Upper-tropospheric
synoptic-scale waves. Part I: Maintenance as Eady normal
modes. J. Atmos. Sci., 49, 2108–2119.

Salmon, R., 1998: Lectures on Geophysical Fluid Dynamics. Oxford
University Press, 378 pp.

Sanders, F., 1988: Life history of mobile troughs in the upper west-
erlies. Mon. Wea. Rev., 116, 2629–2648.

Thorpe, A. J., 1986: Synoptic scale disturbances with circular sym-
metry. Mon. Wea. Rev., 114, 1384–1389.

Vallis, G. K., 1996: Potential vorticity inversion and balanced equa-
tions of motion for rotating and stratified flows. Quart. J. Roy.
Meteor. Soc., 122, 291–322.

Warn, T., O. Bokhove, T. G. Shepherd, and G. K. Vallis, 1995: Rossby
number expansions, slaving principles and balance dynamics.
Quart. J. Roy. Meteor. Soc., 121, 723–729.

Williams, G. P., 1996: Jovian dynamics. Part 1: Vortex stability, struc-
ture, and genesis. J. Atmos. Sci., 53, 2685–2734.

Wirth, V., 2001: Cyclone–anticyclone asymmetry concerning the
height of the thermal and the dynamical tropopause. J. Atmos.
Sci., 58, 26–37.

Yavneh, I., A. F. Shchepetkin, J. C. McWilliams, and L. P. Graves,
1997: Multigrid solutions of rotating, stably stratified flows: The
balance equations and their turbulent dynamics. J. Comput.
Phys., 136, 245–262.


