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ABSTRACT

Tropopause disturbances have long been recognized as important features for extratropical weather since they
produce organized vertical motion in the troposphere. Observations of cyclonic tropopause disturbances show
localized depressions of the tropopause with stratospheric values of potential vorticity extending to lower al-
titudes; anticyclonic disturbances are associated with comparatively smaller upward deflections of the tropopause.
Analytical solutions for nonlinear interfacial wave motions are derived for an intermediate balanced dynamics
based on small Rossby number asymptotics. Beyond quasigeostrophy, traveling edge-wave solutions reveal
realistic asymmetries such that cyclones are associated with greater deflections of the interface, as well as larger
anomalies in pressure and vertical motion compared to anticyclones.

1. Introduction

The tropopause represents an abrupt transition zone
separating the well-mixed troposphere from the more sta-
ble stratosphere. As a result of the relatively strong
(weak) mixing in the troposphere (stratosphere), the strat-
ification and potential vorticity (PV) are small (large).
Among the important issues related to the tropopause,
some concern diabatic processes, such as the mixing be-
tween stratosphere and troposphere of mass and differing
concentrations of trace chemical constituents, whereas
other important issues concern adiabatic processes such
as the dynamics of balanced wave motions supported by
undulations in the tropopause. We are interested here in
the latter concern, and are motivated by the recognition
that tropopause undulations are important for extratrop-
ical weather, since these features produce organized pat-
terns of vertical motion in the troposphere (e.g., Holton
1992, chapter 6; Bluestein 1992, section 1.9). Here we
explore the steadily propagating nonlinear wave solutions
supported by the tropopause under the assumptions of a
uniform-PV jump at the tropopause, constant wind shear
on either side of the tropopause, and small Rossby num-
ber balanced dynamics.

Observational investigations have long shown that
tropopause-based disturbances are often responsible for
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the induction of surface cyclones (e.g., Sanders 1986;
Bluestein 1992). These disturbances are described in the
synoptic-meteorology literature as midtropospheric vor-
ticity maxima, PV anomalies, and jet streaks. Some pri-
mary attributes of these disturbances are illustrated in
Figs. 1 and 2, which result from a composite average
of the strongest quartile of maxima (minima) in the
vertical component of 500-hPa cyclonic (anticyclonic)
vorticity maxima (minima) over North America during
December 1988–February 1989; there are 1681 cyclonic
events and 1533 anticyclonic events. Further details on
the compositing method and an analysis of the cyclonic
disturbances can be found in Hakim (2000). Note that
qualitatively similar results are obtained by defining vor-
ticity anomalies on the 300-hPa surface.

Plan views of potential temperature and pressure on
the dynamic tropopause (defined here as the 1.5 3 1026

m2 K kg21 s21, hereafter 1.5 PVU, Ertel PV surface)
illustrate an asymmetry between cyclones and anticy-
clones (Fig. 1). For the cyclone case, a closed contour
of potential temperature and a 218 K potential tem-
perature anomaly reflect a localized material eddy,
whereas for the anticyclone case, a 12 K potential tem-
perature anomaly accompanies a relatively broader and
weaker disturbance (Figs. 1a,b). Tropopause pressure
for the cyclone case reaches 480 hPa, a 168-hPa anom-
aly, whereas tropopause pressure for the anticyclone
case reaches 230 hPa, a 267-hPa anomaly (Figs. 1c,d).
Zonal cross sections further illustrate the asymmetry
between cyclones and anticyclones (Fig. 2). Cyclonic
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FIG. 1. Plan views of tropopause potential temperature (a), (b) and tropopause pressure (c), (d) for upper-tropospheric cyclones (a), (c)
and upper-tropospheric anticyclones (b), (d). Mean (anomaly) potential temperature values are given by thick (thin) contours every 5 K (4
K) with negative values dashed. Pressure contours are given every 25 hPa.

disturbances exhibit a localized depression of the tro-
popause with stratospheric values of potential vorticity
extending to lower altitude (Fig. 2a). The PV depression
is flanked by a dipole of vertical motion that extends
deeper into the troposphere than the stratosphere. In
contrast, anticyclonic disturbances exhibit a compara-
tively weaker upward deflection of the tropopause and
a weaker dipole of vertical motion (Fig. 2b). Meridional
cross sections show that the disturbances are superposed
on a gradual meridional slope to the tropopause, and
the vertical motion patterns reflect the fact that the ver-
tical circulations are tilted slightly in the zonal-height
plane (Figs. 2b,d). The greatest tropopause slope is
found south of the cyclonic disturbance, where the me-
ridional gradient due to the disturbance field is in phase
with the ambient gradient (Fig. 2c).

There have been two approximate treatments of the
tropopause in the analytical search for balanced tro-
popause wave solutions. One approach treats the tro-
popause as a sharp transition in PV on a material surface,

such as an isentrope that crosses the tropopause; this
transition is assumed independent of height. Wave so-
lutions for this treatment address the speed and hori-
zontal disturbance structure supported by spatially con-
centrated PV gradients and wind shears associated with
the extratropical jet streams (e.g., Verkley 1994). A sec-
ond approach treats the tropopause as a material inter-
face separating two uniform potential vorticity fluids in
the presence of vertical shear and neglects the horizontal
structure of the background PV field. Wave solutions
for this treatment have been found in the quasigeo-
strophic (QG) limit and can be interpreted in terms of
the boundary edge waves of the Eady (1949) model
(Rivest et al. 1992, hereafter RDF). Observational ev-
idence of edgelike waves trapped near the tropopause
has been given by Sato et al. (1993) and Hirota et al.
(1995). Finally, we direct the interested reader to Juckes
(1994) for a comprehensive treatment of QG tropopause
dynamics.

Our goal here is to uncover a theory that accounts
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FIG. 2. Zonal (a), (b) and meridional (c), (d) cross sections of Ertel potential vorticity, potential temperature, and vertical motion through
upper-tropospheric cyclones (a), (c), and anticyclones (b), (d). Ertel PV contours are given by thick solid lines (0.75; 1; 1.25; 1.5; 1.75; 2; 3;
4; 5; 6 PVU), and the heavy line (1.5 PVU) denotes the dynamical tropopause. Potential temperature values are given by thin lines every 5 K,
and vertical motion values are given by medium lines every 0.25 Pa s21 (negative values dashed). Note that 1 PVU 5 1026 K m2 kg21 s21.

for the prominent cyclone–anticyclone asymmetries pre-
sent in tropopause observations but absent in the extant
QG theory. We follow the approach of RDF and Juckes
(1994) and treat the tropopause as a free material in-
terface subject to an Eady-type shear flow. The edge-
wave approach of RDF is extended to include the next-
order balance effects using the QG11 methodology de-
veloped in Muraki et al. (1999, hereafter MSR). The
nonlinearities at next order represent the feedback of
QG interfacial structure into the wave dynamics and
capture the primary observational asymmetries between
the interface depressions and elevations illustrated in
Figs. 1 and 2. Section 2 outlines the Boussinesq prim-
itive equations (PE), which serve as a starting point in
this investigation, the reference atmosphere, and the in-
terface conditions to be satisfied by the solutions. In
section 3, the primitive equations are reformulated in
terms of three QG1 potentials, similar to the approach
taken by MSR, and an asymptotic approximation is out-

lined. Nonlinear wave solutions are derived for flat and
sloped tropopause conditions, and compared with ob-
servations in sections 4 and 5, respectively. Conclusions
and opportunities for future research are described in
section 6.

2. Model formulation

The formulation of the model equations proceeds in
two parts. First, a set of Boussinesq primitive equations
are developed for an atmosphere having uniform strat-
ification. Second, two of these atmospheres are stacked
vertically and separated by the tropopause interface; the
upper layer has a stratospheric Eady base state, and the
lower layer has a tropospheric Eady base state. A crucial
aspect of this construction involves the proper treatment
of interface conditions at the tropopause.
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a. Boussinesq primitive equations

The starting point for our analysis of tropopause
waves is a simple model for the midlatitude atmosphere
as described by a Boussinesq equation set that also in-
cludes the inviscid, hydrostatic, and f -plane assump-
tions:

F FD u 2y fxFu 1 y 1 w 5 0, 1 f 5 2 ,x y z F F1 2 1 2 1 2Dt y u fy

Fg Du
F F2 u 5 2f , 5 0, (1)zu Dt0

where

D ] ] ] ]
F[ 1 u 1 y 1 w (2)

Dt ]t ]x ]y ]z

denotes the usual material derivative. The dependent
variables are the wind velocities uF, y , and w; the po-
tential temperature uF; and the pressure f F. The su-
perscript F indicates full values that include both a mean
background part and a disturbance. Although the quan-
tities f F and z will be referred to as pressure and height,
strictly speaking they represent geopotential and a mod-
ified height coordinate (Hoskins and Bretherton 1972).
The coefficients f, g, and u0 are the Coriolis parameter,
the gravitational constant, and a reference potential tem-
perature, respectively.

The tropopause represents a boundary between a low-
PV troposphere and a high-PV stratosphere. This con-
figuration can be captured by modeling the atmosphere
as a two-fluid system composed of two regions of con-
stant PV that are separated by an internal free bound-
ary—a material interface across which the discontinuity
in PV is supported. The stratospheric and tropospheric
regions are distinguished by differences in their mean
background states that are defined by exact Eady-shear
solutions of (1). Tropopause waves are disturbance so-
lutions from this basic Eady-shear state.

b. Eady mean reference state

The Eady mean-state atmosphere is a steady solution
of the Boussinesq primitive equations (1). It represents
an atmosphere having constant stratification and uni-
form vertical shear:

1 1 g
M 2 2 2 M 2f [ N z 2 flyz 2 flsy , u [ N z 2 fly,

2 2 u0

Mu [ l(z 1 sy), (3)

where N is the Brunt–Väisälä frequency and l is the
shear rate. The additional parameter s is introduced in
anticipation that a tilt of the uM 5 0 velocity surface
will be useful for the construction of a two-layer at-
mosphere (as in RDF). In the idealized tropopause rep-
resentation, the distinction between stratosphere and tro-

posphere is defined through their representative values
of N and l.

c. Scaling and nondimensionalization

For disturbances upon the Eady state (3), character-
istic vertical and horizontal length scales are denoted
by H and L, and horizontal velocity scales by V. The
assumption that the flow be near quasigeostrophic bal-
ance requires the dimensionless conditions of small as-
pect ratio, small Rossby number, and order-unity Burger
number:

H V
d [ K 1, e [ K 1,

L fL

2NH
B [ 5 O(1). (4)1 2fL

In addition, O(1) nondimensional shear and tropopause-
slope parameters associated with the background shear
(3) are defined and scaled as in RDF:

lH s
L [ 5 O(1), s [ 5 O(1). (5)

V de

Note that the viability of these scalings [(4), (5)] for
QG balance demands only that the atmosphere be
strongly stratified with respect to both Coriolis and shear
influences ( f K N and l K N).

Nondimensionalization of the Boussinesq system (1)
is based on the disturbance scales x, y ; L, and z ; H,
and on the horizontal advection timescale t ; L/V. Fol-
lowing Pedlosky (1987), the disturbance winds and ver-
tical motion are scaled as

u 5 uF 2 uM ; V, y ; V, w ; edV, (6)

and the pressure and potential temperature disturbance
scales are those of thermal-wind balance:

F Mf 5 f 2 f ; VfL,

g
F Mu 5 (u 2 u ) ; VfL /H. (7)

u0

Note that all of the disturbance variables have been
carefully scaled to be independent of variations in the
ambient stratification N and shear parameter l, since
these quantities are different in the stratosphere and tro-
posphere.

d. Disturbance equations

Applying these nondimensionalizations to the Bous-
sinesq system (1) results in the disturbance PE for the
Eady mean state:
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u 1 y 1 ew 5 0x y z

Du
2e 1 e L(sy 1 w) 2 y 5 2fxDt

Dy
e 1 u 5 2fyDt

2u 5 2fz

Du
2 Ly 1 Bw 5 0, (8)

Dt

where the material derivative

D ] ] ] ]
[ 1 [L(z 1 esy) 1 u] 1 y 1 ew (9)

Dt ]t ]x ]y ]z

includes advection by the Eady shear. The dimensionless
expressions for the Eady state (3) with disturbances are

1 B 1
F 2 2f 5 z 2 Lyz 2 eLsy 1 f,

2 e 2

B
F Fu 5 z 2 Ly 1 u, u 5 Lz 1 eLsy 1 u. (10)

e

Note that the O(1/e) leading terms in f F and uF embody
the strong stratification implied by the assumption of
small Rossby number. The nondimensionalized Ertel po-
tential vorticity based on (10) is

F u   
FQ [ ẑ 1 e= 3 y · (=u )  

  
0  

B
5 2 eL(L 1 Bs) 1 Bq, (11)[ ]e

which is decomposed into a contribution from the Eady
mean state plus a disturbance potential vorticity term
denoted by q. The Eady contribution, although large, is
uniform in both the stratosphere and troposphere, and
provides the PV contrast primarily through a jump in
the stratification B. It is also clear that only the distur-
bance portion of the potential vorticity (PV),

1
q 5 y 2 u 1 ux y z1 2B

e
1 [(y 2 u 2 eLs)u 2 y u 1 u ux y z z x z yB

1 L(u 2 u )], (12)y z

is dynamically relevant. Its evolution is governed by
material conservation,

Dq
5 0, (13)

Dt

and unless stated otherwise, the term PV will be re-
served for this disturbance value q.

e. A tropopause atmosphere

Following RDF, the Eady basic state allows for the
construction of a tropopause base state by introducing
a jump in the values of Burger number B and shear L
(and hence, a jump in PV), which supports an internal
material surface. By the scalings (4) and (5), the PE (8)
conveniently apply for both stratosphere and tropo-
sphere with the appropriate values of B and L. Strato-
spheric values are denoted by Bs, Ls and tropospheric
values by Bt, Lt. To exploit this notational symmetry
and to simplify the presentation, the bold script s and
t will be omitted whenever the context is unambiguous.

For the undisturbed atmospheric state, the height of
the tropopause (zi) is located at the level with zero hor-
izontal wind shear, zi 1 esy 5 0; see (10). The strato-
sphere resides above this level, z . zi, and the tropo-
sphere below, z , zi. Imposing continuity of the un-
disturbed pressure and temperature (10) at z 5 zi, the
contrast in background parameters requires

L 2 Lt ss 5 , (14)
B 2 Bs t

which implies a unique value for the weak meridional
tilt of the tropopause [cf. RDF, their Eq. (24)].

It will prove useful in the interpretation of the edge-
wave dispersion relation to note that the equivalent me-
ridional gradient in pseudo-PV (Pedlosky 1987, p. 358)
of the basic state can be written as

eq 2 F]Q ] u 2 u L Lt s5 ø 2 d(z 1 esy), (15)1 2 1 2]y ]z]y B B Bt s

where d(z 1 esy) is the Dirac delta function acting at
the tropopause. Although the tropopause slope s be-
comes negative for Ls/Lt . 1, a negative meridional
PV gradient requires the stronger condition Ls/Lt .
Bs/Bt . 1, which reflects the considerable dynamical
influence exerted by the stratification difference across
the interface.

Two special reference atmospheres are considered:
one having a flat tropopause, in the case of uniform
shear (Ls 5 Lt), and the other a sloped tropopause, in
the case without stratospheric shear (Ls 5 0; as in RDF).
Meridional profiles of full potential temperature uF for
both reference atmospheres are shown in Fig. 3. The
exact compensation by the tropopause tilt for the zero
stratospheric shear is evident from the continuity of the
isentropes in Fig. 3b.

f. Interface conditions

As constructed above, the reference tropopause sat-
isfies continuity of pressure and temperature, in addition
to the interface being a material surface within the shear
flow. These three properties of the interface must be
maintained when disturbance flow and tropopause de-
formation are included. The major technical difficulty
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FIG. 3. Meridional cross section of potential temperature for (a) flat and (b) sloped undisturbed
tropopause position. Potential temperature values are given by thin lines every 5 K. The heavy
line denotes the undisturbed tropopause interface. Parameters common to both cases are e 5
0.1, Bs 5 4, and Bt 5 1. The Eady shear parameters are Ls 5 0, Lt 5 1 for the sloped
tropopause, and Ls 5 Lt 5 1 for the flat tropopause.

involves the participation of the tropopause as a dy-
namical surface, which distinguishes the regions of dif-
fering B and L in the PE (8). The equations for the
interface conditions are best described in a coordinate
system that naturally slopes with the undisturbed tro-
popause. Prior to adjusting the coordinates and outlining
the interface matching conditions for the disturbed tro-
popause, the QG11 reformulation of the PE (8) is pre-
sented.

3. QG11 tropopause wave asymptotics

a. QG1 reformulation of the primitive equations

The tropopause wave solutions of the disturbance PE
(8), which include the next-order corrections beyond
QG, are constructed following the QG1 methodology,
a systematic asymptotic approach to quasigeostrophic
balance (MSR). This method is applied here within the
context of the above PE (8), taking explicit account of
the Burger number, B. The QG1 method generalizes the
familiar QG streamfunction representation to a three-
potential representation:

1 1
y 5 F 2 G , 2u 5 F 1 F ,x z y zB B

u 5 F 1 G 2 F , eBw 5 F 1 G . (16)z x y x y

The PE (8) are then exactly equivalent to the sequence
of elliptic inversions for the potentials (F, F, G):

e
2¹ F 5 q 2 [(y 2 u )u 2 y u 1 u uB x y z z x z yB

1 L(u 2 u 2 esu )]y z z

Du Dy
2¹ F 5 e 2 1 1 LyB x1 2 1 2[ ]Dt Dt

x z

Du Du
2¹ G 5 e 2 2 1 L(y 2 esy 2 ew ) ,B y z z1 2 1 2[ ]Dt Dt

y z

(17)

where the Laplacian operator is modified by the strat-
ification B:

2 2 2] ] 1 ]
2¹ [ 1 1 . (18)B 2 2 2]x ]y B ]z

Inclusion of the PV evolution equation (13) completes
the reformulation of the PE in terms of QG1 potentials.
It is emphasized that the above QG1 system of equations
[(16), (17), (13)] constitutes an exact reformulation of
the disturbance PE (8). This particular form of the PE
has been crafted to enable a straightforward truncation
to QG and its perturbative corrections. For complete-
ness, we note that unbalanced motions, such as gravity
waves, reside within (17), and can be isolated by a ju-
diciously chosen timescale and expansion procedure
(MSR).



1 FEBRUARY 2001 243M U R A K I A N D H A K I M

The QG11 balanced system is constructed by assum-
ing a perturbation solution based upon the small Rossby
number (e) expansion:

0 1 2 1 2F 5 F 1 eF 1 O(e ), F 5 eF 1 O(e ),
1 2G 5 eG 1 O(e ), (19)

which allows for an iterative inversion of correcting
potentials using (17). The boundary and interface con-
ditions for these inversions are obtained from physical
conditions in terms of primitive variables. Specific to
this tropopause analysis, the QG11 asymptotic procedure
requires an additional alteration that is dictated by the
tilt of the tropopause and involves a change to a sloped
coordinate frame.

b. Tropopause coordinates

The tropopause wave is obtained as a stationary wave
solution in a zonally propagating frame. This wave so-
lution must possess lateral periodicity in the directions
parallel to the reference tropopause surface. With the
tilted tropopause (s ± 0), it proves useful to express
the spatial structure in terms of a (slightly) skewed co-
ordinate system where the vertical coordinate is refer-
enced to the undisturbed (tilted) tropopause. This mo-
tivates a change to tropopause coordinates, as defined
by a translating and O(e)-skewed frame:

x 5 x 2 ct, y 5 y, z 5 z 1 esy, t 5 t, (20)

where c is the zonal wave speed. In this moving frame,
traveling wave solutions are independent of t . Most im-
portant, the reference tropopause now resides at z i 5 0.

c. The tropopause as a free-boundary interface

The tropopause waves are essentially two edge waves
trapped on an isolated internal interface. In addition to
lateral periodicity, wave disturbances are also assumed
to decay in the vertical away from the tropopause z →
6`. At the tropopause, the physical conditions to be
satisfied are continuity of (full) pressure and tempera-
ture, and dynamics of the tropopause as a material sur-
face.

The disturbed tropopause is described as a surface
that is displaced from the reference tropopause:

z i 5 eh(x , y , t). (21)

As noted in RDF and Juckes (1994), this weak O(e)
scaling of the tropopause displacement is a requirement
for the temperature disturbances to be consistent with
QG balance. Dimensionally, this means that this analysis
for tropopause waves will be strictly valid only when
the height of the tropopause disturbances is smaller than
the Rossby height as defined by the ambient stratifi-
cation. The interface continuity conditions on f F and
uF (10), in terms of tropopause coordinates (20) can be
written

s
1

2 sf 1 Beh 5 {u 1 Bh} 5 0, (22)t5 62 t

where the bold s, t notation indicates subtraction of
stratospheric and tropospheric values at the tropopause.

The third condition is that the tropopause interface
represents a material surface with respect to both the
upper and lower flows:

i
D

[z 2 eh(x, y, t)]5 6Dt
i5 e{sy 1 w 2 h 2 (eLh 1 u 2 c)h 2 yh }t x y

5 0, (23)

where the superscript i indicates evaluation on the tro-
popause in either the stratosphere or the troposphere.
This interface condition is required since the tropopause
displacement, h(x , y , t), is determined as part of the
solution. The PE (8), or equivalently QG1 (13), (16),
(17), with boundary and interface conditions (22), (23)
represent a complete specification of a free-boundary
interface problem for the dynamics of the tropopause.

Specific to the tropopause wave, it proves convenient
to combine (23) with the thermodynamic (u advection)
equation in the PE (8) to give

u u L 1 sB
(eLh 1 u 2 c) 1 h 1 y 1 h 2 y5 1 2 1 2[ ]B B B yx

i
e

1 (w 1 sy)u 5 0,z6B
(24)

where the restriction to a steady, t-independent wave
has also been made.

Finally, the weak displacement assumption (z i K 1)
also allows the evaluation of the interface quantities that
arise in the conditions (22), (24) through a Taylor ex-
pansion. For instance, the value of a function
f (x , y , z , t) on the interface z i 5 eh(x , y , t) has the Tay-
lor representation

f (x, y, z , t ) ; f (x, y, 0, t ) 1 ehf (x, y, 0, t )i z

1
2 21 e h f (x, y, 0, t ) 1 · · · , (25)z z2

so that all tropopause conditions can be expressed in
terms of z 5 0 quantities. Finally, it should be noted
that the formulation (21) also assumes lateral gradients
of the tropopause h(x , y , t) to be O(1), which precludes
the validity of this analysis for tropopause folds.

4. QG1 tropopause wave solutions

Using QG theory, RDF successfully showed that a
simple single-mode tropopause wave can be described
using two copropagating Eady edge waves that decay
away from the tropopause interface. More generally, this
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QG wave corresponds to a leading-order, nonlinear so-
lution of the PE (8) that is characterized by uniform
interior PV and is steady with respect to a frame moving
with speed c. In a manner similar to that of the QG11

edge wave (MSR), here we derive the next-order tro-
popause wave solution whose nonlinear corrections dis-
play cyclone–anticyclone asymmetry.

a. QG11 perturbation expansions

In tropopause coordinates, the next-order potential
representations (16) are

1
0 1 1 2y 5 F 1 e F 2 G 1 O(e )x x z1 2B

1
0 1 1 0 22u 5 F 1 e F 1 F 1 sF 1 O(e )y y z z1 2B
0 1 1 1 2u 5 F 1 e(F 1 G 2 F ) 1 O(e )z z x y

1 1Bw 5 F 1 G 1 O(e), (26)x y

which, in the flat case (s 5 0), recovers (16). In addition,
the tropopause displacement is also expressed as a per-
turbation series:

h(x , y) 5 h0(x , y) 1 eh1(x , y) 1 O(e2), (27)

which allows the interface conditions (22), (24) to be
satisfied expansions in Rossby number. Last, the only
impact of the skewed coordinates (20) at next order in
the QG1 potential inversions (17) is an extra term in
the Laplacian operator:

2 2 2 2] ] 1 ] ]
2 2¹ 5 1 1 1 e2s 1 O(e ). (28)B 2 2 2]x ]y B ]z ]y]z

b. Leading-order QG tropospause wave

The leading-order wave is expressed solely in terms
of F0(x , y , z) (26) in which the potential representation
(16) reduces to the familiar geostrophic relations

y ; , 2u ; , u ; , f ; F0,0 0 0F F Fx y z (29)

and F0 is a solution to the zero-PV inversion (12):

2 1
0 0 0 0¹ F [ F 1 F 1 F 5 0. (30)B x x y y z zB

Horizontally periodic Eady solutions are single-mode
upper/lower waves given by

s: A coskx cosly exp(2mÏB z )s s0F 5 (31)5t: A coskx cosly exp(1mÏB z ),t t

where m2 5 k2 1 l2, and the sign of the exponent is
chosen for decay away from the tropopause z → 6`.
Note that the s, t solutions of F0 (31) are defined by
regions above and below the displaced tropopause po-
sition z 5 eh(x , y).

The relative amplitudes As and At, the leading-order
tropopause height h0(x , y), and the wave speed c are
determined through the interface conditions (22), (24).
The weak displacement assumption permits leading-or-
der application of the tropopause conditions at z 5 0,
as O(e) errors in the interface evaluations (25) are de-
ferred to next order. Thus by virtue of the continuity of
leading-order pressure (22), the amplitudes As 5 At 5
A are the same for both upper and lower solutions. The
leading-order terms of the material condition (24) can
be manipulated into a zero-Jacobian condition

i0
0u L 1 sB

0 0J F 1 cy, 1 h 2 y 5 0, (32)5 1 2 6[ ]B B

where J( f, g) [ 2 is the Jacobian derivative;f g f gx y y x

the bold i0 superscript denotes evaluation on z 5 0. For
a periodic wave, the Jacobian can only vanish when the
two arguments are proportional. Since the nonlinearity
in Jacobian (32) exactly cancels, the remaining interface
conditions (32) and (22) reduce to

i0
0L 1 sB u

0 0F 1 c 1 h 5 051 2 1 26B B
0 0 s0{u 1 Bh } 5 0, (33)t0

where the first relation is really two conditions, as it
must hold at the interface for both the stratospheric and
tropospheric solutions. The bold scripts s0 and t0 denote
that the difference between stratospheric and tropo-
spheric values are evaluated at z 5 0.

Quasigeostrophic solutions derive from substituting
(31) into (33). The second condition in (33) gives the
relationship between the interface displacement and the
streamfunction,

m
0 0h (x, y ) 5 F (x, y, 0)

ÏB 2 ÏBs t

0[ C F (x, y, 0), (34)h

which is equivalent, for Ls 5 0, to the corrected RDF
formula noted by Juckes [1994, Eqs. (3.9) and (3.10)].
The proportionality between tropopause height and QG
streamfunction, Ch, is independent of the background
shear, and as expected, is singular in the limit of van-
ishing interface (Bs → Bt). The first condition in (33)
gives the dispersion relationship,

211 L L 1 1t s 2c 5 2 1 1 O(e ), (35)1 21 2m B B ÏB ÏBt s s t

which again reduces to the RDF solution when Ls 5 0.
Furthermore, the direct relationship in (35) between
wave speed and base-state pseudo-PV gradient (15)
highlights the qualitative similarity between tropopause
edge waves and classic barotropic Rossby waves. Note
also that in the limit Bs or Bt → `, (34) and (35) reduce
to QG edge waves trapped on a rigid surface (Gill 1982).
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The correspondences presented here are consistent with
Juckes’s (1994) more general observation of the dy-
namical equivalence between the QG tropopause and
surface quasigeostrophy (Held et al. 1995). Last, al-
though in general one might expect the wave speed c
to be corrected at next order, we state here for simplicity
(anticipating the QG11 construction) that the correction
at O(e) is exactly zero.

Finally, using the thermodynamic relation, the lead-
ing-order vertical motion is given by

Bw0 5 [Ly 0 1 (c 2 Lz) ]0ux

5 [LF0 1 (c 2 Lz) .0u ]x (36)

c. QG11 wave corrections

The extension of the tropopause wave to next order
in Rossby number involves solving for the potentials
F1, F 1, G1 subject to the next-order interface conditions.
The most important results of this calculation are the
corrections that are nonlinear in the wave amplitude, as
these terms are responsible for the cyclone–anticyclone
asymmetries. The major complication lies in the com-
plete solution of F1, where a homogeneous boundary
correction must be determined. A careful statement1F̃
of this difficulty is given below, and some additional
details of the calculation are deferred to appendix B.

The potentials F1, F 1, and G1 are obtained by next-
order Poisson inversions (17) in tropopause coordinates
(20):

2 1 1
1 0 2 0 2 0 2¹ F 5 (F ) 1 (F ) 1 (F )B x z y z z z[ ]B B

2
02 (L 1 sB)Fy zB

2
1 0 0 0¹ F 5 2J(F , F ) 1 2LFB z x x x

2
1 0 0 0¹ G 5 2J(F , F ) 1 2LF , (37)B z y x y

where extra terms in the F1 equation are generated by
the rotated Laplacian (28). All three potentials can be
expressed almost completely in terms of derivatives and
(indefinite) integrals of the QG solution:

1
1 0 2 0 1˜F 5 (F ) 2 (L 1 sB)zF 1 Fz y2B

z

1 0 0 0 0 0F 5 F F 1 LBz F 1 (cu 1 LF )y z E x x1 2
z

1 0 0 0G 5 2F F 1 LBz F , (38)x z E x y

with appropriate choices taken for B, L, and F0 (31) in
the stratosphere and troposphere (for notational sim-
plicity, the formal dz is dropped from the integral op-
erator). The final term for F 1 is a homogeneous solution,

which is necessary for QG11 consistency with mass con-
tinuity (16):

1 5 Bw0,1 1F Gx y (39)

where w0 is given by (36). At this point, it remains only
to determine a homogeneous solution , which is nec-1F̃
essary to satisfy the physical conditions at the interface
(22), (24).

The QG11 pressure is obtained from a vertical inte-
gration of the next-order hydrostatic balance 5 u1,1f z

where u1 is constructed using the QG11 potentials (38):
z1 2

1 1 0 2 0 0f 5 F 2 ¹ (F ) 2 cF 2 L F , (40)H y E y4

and 5 1 .
2 2 2¹ ] ]H x y

There are two conditions that define the homogeneous
contribution . The first condition comes from con-1F̃
tinuity of the O(e) contributions of full pressure on the
tropopause (22):

s0z 1
1 0 0 2F̃ 2 L F 5 (B 2 B )(h ) , (41)E y s t1 2 2

t0

where the apparent sign change of the right side with
respect to (22) follows from the inclusion of the deferred
O(e) Taylor correction (25) of the leading-order pressure
f 0(x , y , z i) evaluated at z i ; eh0.

A second condition on is given by the O(e) terms1F̃
of the interface condition (24). Its derivation requires a
considerable amount of manipulation, and the essential
details are deferred to appendix A. Specifically, for the
tropopause wave (31):

s0z1 ] (L 1 sB)
1 0˜1 F 2 L FE y5 1 21 26B ]z c t0

2
0 25 (C ¹ 1 C )(F ) 1 C , (42)1 H 2 3

where the three C constants are also defined in appendix
A. Boundary conditions (41) and (42) determine a ho-
mogeneous solution of the form1F̃

z

1 1 0 1˜ ˜F 5 f̃ 1 L F 1 F , (43)nl E y nl

where the nonlinear part consists of a constant and1F̃nl

second harmonics only; the full solution is given in
appendix B. Note that the linear part of (43) is not1F̃
uniquely determined by the boundary conditions but by
demanding that the solution give the QG11 edge waves
of MSR in the limit of either Bs or Bt → `. Last, the
correction to the tropopause displacement follows im-
mediately from next-order continuity of potential tem-
perature (22):

1 1 0 0 s0(B 2 B )h 5 2{u 1 h u } , (44)s t z t0

where the second right-side term is a Taylor correction
from the tropopause displacement.
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TABLE 1. Values for scaling parameters, derived nondimensional quantities, and derived dimensional quantities.

Dimensional quantities Nondimensional quantities Dimensional scales

L 1000 km e
V

f L 0.1 t
L

V
ø27.8 h

H 10 km d
H

L 0.01 s eds 0 or ø20.333 m km21

V 10 m s21 Bs

2N Hs1 2f L 4 f Vf L 103 m2 s22

f 1024 s21 Bt

2N Ht1 2f L 1 p r0Vf L 10 hPa

Ns 4 3 1022 s22 Lt

lH

V 1 u
Vf L u0

H g 3K

Nt 1 3 1022 s22 Ls 1 or 0 w edV 1 cm s21

l 1 m s21 km21 s
L 2 Lt s

B 2 Bs t

0 or 2
1

3

u0

g 30 K s2 m21

r0 1 kg m23

FIG. 5. Plan view of tropopause potential temperature comparing
(a) QG and (b) QG11 solutions for the sloped case. Full values uF

are given by thick solid lines every 5 K, and disturbance values u
are given by thin lines every 4 K, with negative values dashed.

FIG. 4. Plan view of tropopause potential temperature comparing
(a) QG and (b) QG11 solutions for the flat case. Full values uF are
given by thick solid lines every 5 K, and disturbance values u are
given by thin lines every 4 K, with negative values dashed.

5. The tropopause waves

Here we discuss the structure of the tropopause wave
solutions for both flat- and sloped-tropopause basic
states. All figures are plotted in physical coordinates
with typical dimensional values that are given in Table
1. The tropopause maps (Figs. 4–7, 10) represent a full
wavelength in y and a half wavelength in x. Tropopause
values are approximated at the displaced interface po-
sition using the Taylor expansion (25). In the vertical
profiles (Figs. 8, 9, 10), discontinuities in the contours
across the tropopause appear for two reasons. First, al-

though the interface-normal velocity is continuous at
the interface, the individual wind components are un-
constrained. This fact accounts for the misaligned con-
tours of y in Fig. 10, and to a lesser degree w in Fig.
8. Second, although full temperature and pressure are
continuous at the interface (22), there are systematic
errors associated with the asymptotic truncation to O(e)
in QG and O(e2) in QG11. The tropopause wave solu-
tions shown here, with Rossby number e 5 0.1, are
square waves with k 5 l 5 1 and amplitude A 5 1.0,
except where A 5 0.7 in Fig. 11. For simplicity, cy-
clone–anticyclone asymmetry is quantified below as the
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FIG. 6. Plan view of tropopause height comparing (a) QG and (b)
QG11 solutions for the flat case. Disturbance values h are given every
500 m.

FIG. 7. Plan view of tropopause height comparing (a) QG and (b)
QG11 solutions for the sloped case. Full values 2sy 1 h are given
by thick solid lines every 600 m, and disturbance values h are given
by thin lines every 500 m, with negative values dashed.

absolute value of the ratio of cyclone to anticyclone
extreme values; all aspects of the QG solutions have an
asymmetry ratio of unity.

The tropopause potential temperature field for the QG
and QG11 flat-tropopause solutions are shown in Figs.
4a and 4b. Cyclonic and anticyclonic cells are sym-
metric for the QG wave, whereas the cyclonic cell is
notably stronger for the QG11 wave, with an asymmetry
ratio of 2.875. Furthermore, the contributions from the
second harmonics produce a more localized, nearly axi-
symmetric structure for the QG11 cyclone in contrast to
the broader, more squarelike structure for the QG11 an-
ticyclone. The sloped-tropopause case in Fig. 5 is sim-
ilar to the flat-tropopause case, except for an asymmetry
of 1.89 and stronger (weaker) gradients in the full po-
tential temperature field to the south (north) of the QG11

cyclone (anticyclone). An enhanced gradient region is
suggestive of upper-level fronts, which typically occur
near steeply sloped regions of the tropopause (e.g., Key-
ser and Shapiro 1986). Two closed contours in the full
potential temperature field signify a region of trapped,
vortical fluid in the QG11 cyclone, whereas the QG wave
has open, wavelike, material contours. Comparing ob-
servations with the QG11 solution shows that the QG11

solution captures the qualitative properties of the cy-
clone–anticyclone asymmetry, as well as the material
eddy and wavelike properties of the cyclone and anti-
cyclone, respectively (cf. Fig. 5b with Figs. 1a,b).

Cyclone–anticyclone asymmetry is dramatically il-
lustrated in the tropopause height perturbations, which
have an asymmetry of 3.86 for the flat tropopause waves
(Fig. 6). The height asymmetry for the sloped-tropo-
pause solutions is 2.22, and this solution compares more
favorably with observations since the ambient gradient
of tropopause height is included (cf. Fig. 7b with Figs.

1c,d; note that tropopause pressure and height are close-
ly correlated). Furthermore, a significant improvement
in the sloped solution over the flat solution is the re-
duction of second-harmonic contributions in the cor-
rections to the former, which removes a local minimum
from the anomaly height field at the center of the flat
anticyclone (Fig. 6b).

A zonal cross section through the waves highlights
the profile of the disturbed interface, with an enhanced
cyclone and a flattened anticyclone for the QG11 relative
to the QG solution (Fig. 8); note the qualitatively similar
behavior in the observations (Figs. 2a,b). Vertical mo-
tions are damped above the interface and reach their
largest magnitude below the interface for both QG and
QG11 solutions. A notable difference between the QG
and QG11 solutions is slightly stronger vertical motions
that are concentrated toward the cyclone center in a
manner similar to the dipole of vertical motion noted
in observations (cf. Fig. 8b with Fig. 2a). This behavior
may be explained by the dynamic interface condition,
which requires greater vertical motions to elevate and
depress the interface near the QG11 cyclonic interface
deflection. Note that since w scales with the lateral
length scale as L22, solutions for higher wavenumbers
k, l exhibit considerably larger vertical motions whose
extrema are much closer to the interface. Since the di-
mensional horizontal scale of these waves is ;3000 km
(half wavelength), this tendency would be more in line
with the observations in Figs. 2a,b where the horizontal
scale is significantly less at ;1000 km.

The potential temperature lines in the troposphere
bulge upward in the cyclone and downward in the an-
ticyclone in a manner similar to observations (cf. Figs.
8 and 2a,b), and as one would expect from PV reasoning
based on local cyclonic and anticyclonic PV anomalies
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FIG. 8. Zonal cross section of full potential temperature uF and vertical motion w comparing
(a) QG and (b) QG11 solutions for the sloped case. Potential temperature is given by thin solid
lines every 5 K, and vertical motion is given by thick lines every 1 mm s21, with negative
values dashed. The heavy line denotes the tropopause interface.

FIG. 9. Meridional cross section of full potential temperature uF comparing (a) QG and (b)
QG11 solutions for the sloped case. Potential temperature is given by thin solid lines every 5
K. The heavy line denotes the tropopause interface. The vertical motion w is identically zero
in this cross section.
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FIG. 10. Zonal cross section of (a) full potential temperature uF and meridional wind y and
(b) disturbance pressure f for the flat tropopause QG11 solution. Potential temperature is given
by thin solid lines every 5 K; meridional wind is given by thick lines every 2 m s21; disturbance
pressure is given every 2.5 hPa (negative values dashed). The heavy line denotes the tropopause
interface.

(Hoskins et al. 1985). Similar potential temperature pat-
terns are apparent in the meridional cross section
through the sloped-interface solution (Fig. 9); this cross-
section orientation also illustrates the natural back-
ground slope of the tropopause (cf. Figs. 9 and 2c,d).
The vertical motion w is identically zero in this profile.
Note also that the tropopause slope is greatest on the
equatorward portion of the cyclone and a localized wind
maximum, a jet streak (e.g., Uccellini and Kocin 1987),
is also found on the tropopause in this location (Fig.
11). Although the QG11 analysis applies formally to
small interface displacements, the solutions show an
encouraging tendency toward capturing realistic prop-
erties of upper-level jet-front systems. Moreover, the
QG11 solution demonstrates that balanced, steadily
propagating, jet streaks are possible for asymmetric vor-
tex dipoles. These features have been documented in
observations (Cunningham and Keyser 1999); however,
to our knowledge, the QG11 solution is the first that
captures the asymmetry for Rossby-type waves.

Last, Fig. 11 shows a zonal cross section of pressure
and meridional wind through the QG11 flat-tropopause
solution (A 5 0.7) that serves as a basis for comparison
with the idealized tropopause cyclone and anticyclone
solutions of Thorpe (1986, his Figs. 1 and 2). Although
the QG11 solution applies to a steadily propagating
square wave in a background shear, and the Thorpe
vortices are steady PE solutions for specified axisym-
metric distributions of tropopause potential temperature

confined above and below by rigid horizontal bound-
aries, the results are qualitatively similar. The greatest
meridional winds are found in a dipole straddling the
cyclone at the loci of maximum interface slope, and the
winds decay more rapidly into the stratosphere than into
the troposphere. The cyclone–anticyclone asymmetry is
quite pronounced in the pressure-anomaly field, with an
asymmetry of 1.73, an acorn-shaped low pressure anom-
aly, and an almond-shaped high pressure anomaly that
compares favorably to the Thorpe results. These com-
monalities lend support to our conclusion that the QG11

solution is capturing significant asymmetries that are
present in the PE but absent in the QG equations.

6. Conclusions and future directions

The extant theory for balanced tropopause wave mo-
tions that resolve the vertical jump in potential vorticity
at the interface are QG edge waves for the Eady (1949)
model (Rivest et al. 1992). These waves possess a sym-
metry between the structure of cyclones and anticy-
clones. In contrast, observations show prominent asym-
metries between cyclones and anticyclones associated
primarily with a greater interface deflection for cy-
clones: larger tropopause pressure (and height) and po-
tential temperature anomalies, and larger vertical mo-
tions near cyclones. Here we formulate an asymptotic
model for tropopause wave motions and demonstrate
that periodic wave solutions capture these primary
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FIG. 11. Plan view of tropopause height and total wind speed for
the sloped case. Full values 2sy 1 h are given by thin solid lines
every 600 m, and total wind speed contours are given by thick solid
lines (15, 17.5, 20 m s21); a uniform background zonal wind speed
of 10 m s21 has been added to the solution.

asymmetries. This analysis combines an extension of
the QG approximation to the primitive equations (QG11)
following Muraki et al. (1999) with an expansion for
the tropopause position that asymptotically satisfies con-
tinuity of pressure, temperature, and a dynamic interface
condition. At leading order, the QG waves of the afore-
mentioned extant theory are recovered. At next order,
cyclone–anticyclone asymmetries emerge that compare
favorably to observations. These asymmetries arise pri-
marily due to the nonlinear feedback of QG displace-
ments into the QG11 wave dynamics, which are greatly
influenced by the enhanced stability of the stratospheric
base state.

Two basic states are considered: a flat tropopause as-
sociated with uniform shear in the troposphere and
stratosphere, and a sloped tropopause associated with
zero shear in the stratosphere. Solutions for both basic
states capture the primary asymmetries noted in obser-
vations, including the larger tropopause potential tem-
perature and height perturbations associated with cy-
clones. For a wave amplitude of A 5 1.0, the contri-
butions from just the second-harmonic corrections in

the solution produce a localized cyclonic vortex with
closed material lines as compared to a broader anticy-
clone with square wavelike open material lines. Al-
though vertical motions are maximal below the interface
for both the QG and QG11 wave solutions, the next-
order corrections produce a stronger, more localized
structure of vertical motion beneath the cyclone. These
larger vertical motions are completely consistent with
greater tropopause height deformations associated with
the cyclonic part of the wave.

A noteworthy feature of the wave solution is the lack
of tilt in its zonal profile despite the background vertical
shear; this is consistent with the fact that a neutral (non-
growing) traveling wave cannot exchange energy with
the shear flow (e.g., Pedlosky 1987, section 7.3). How-
ever, observations show a tilt of the vertical circulation
in the zonal-height plane (Fig. 2a). This tilt in the ob-
servations could be due to a number of reasons, among
them meridional velocity shears, time-dependent aver-
age growth (decay) of the cyclones (anticyclones), or a
slight NW to SE bias of the mean jet stream.

Localized wind speed maxima, jet streaks, are cap-
tured by both the QG and QG11 solutions equatorward
of the cyclone disturbance. An important characteristic
at next order is the cyclone–anticyclone asymmetry that
is often noted in observations of jet streaks associated
with vortex dipoles. A novel aspect of these next-order
solutions is that the symmetry breaking to a dipole with
a strong cyclone and a weak anticyclone follows nat-
urally from a bias within the QG11 dynamics.

In addition, the next-order solutions compare favor-
ably with the primitive equation PV-inversion solutions
of Thorpe (1986) for steady vortices. The close corre-
spondence between our solutions, observations, and
Thorpe’s solutions supports our conclusion that the im-
portant asymmetries contained in the primitive equa-
tions are well represented within the QG11 theory. This
corroboration provides an incentive to conduct more
careful comparisons between the solutions and obser-
vations. One opportunity would be to take these tro-
popause wave solutions as an initial basis for correla-
tions between various disturbance amplitudes, such as
anomalies in, for example, potential temperature, pres-
sure, and vorticity, to compare with similar statistics
obtained from observations. Another avenue for inves-
tigation would be to extract particle trajectories from
these more realistic tropopause wind fields for the pur-
pose of understanding mechanisms for vertical transport
toward the tropopause.

The sloped-tropopause solution introduces the natural
meridional tilt of the tropopause that is absent in the
flat solutions. One apparent defect of the flat solution
is a local minimum in the height anomaly field located
at the center of the anticyclone; this feature is absent
in the sloped solution (Fig. 7). In the sloped solution,
the steepest gradients of tropopause height are found
equatorward of the cyclone disturbance. This feature is
associated with enhanced gradients of tropopause po-
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tential temperature, and is reminiscent of an upper-level
front. It has been noted that a limitation of this asymp-
totic model (due to the Taylor expansions used to eval-
uate the tropopause quantities) is that tropopause folding
cannot be captured. Nonetheless, it appears that the
asymmetries resolved by the sloped solutions are cap-
turing the tendency toward such structures. Possible im-
provements to the tropopause dynamics might by re-
alized by computing interface values directly through
inversions obtained via a boundary-integral method, or
by introducing tropopause-based coordinates. Such
strategies could potentially achieve more extreme in-
terface distortions and allow closer scrutiny of the de-
velopment of upper-level fronts and tropopause folds.

The stationary nature of the tropopause wave struc-
ture presumes a state in which the dynamics are in an
exact equilibrium (within the traveling frame). An im-
portant next step concerns understanding how these
next-order physical effects are manifested in the time-
dependent QG11 dynamics of the tropopause. Of par-
ticular interest is the degree to which the dynamical
asymmetries affect the development of cyclonic distur-
bances on the tropopause. For the case of uniform in-
terior PV, the time-dependent version of this interfacial
QG11 analysis is equivalent in principle to a surface QG
model (Held et al. 1995) with an additional time-de-
pendent interface condition for tropopause displacement
h(x, y, t). This framework has the powerful advantage
of resolving the dynamics of a three-dimensional flow
in two dimensions. Furthermore, since these flows reside
within a vertically infinite domain, they permit study of
the interface dynamics in isolation; such isolation is
impractical with current intermediate models. Potential
topics of investigation with such a model include gen-
eral wave dynamics, tropopause frontogenesis, shear in-
stabilities, and turbulent evolutions. Finally, as a re-
placement for the rigid-lid condition in the study of
baroclinic instability, this interfacial theory for a dy-
namical tropopause boundary offers a new framework
for studying the interaction of a flexible tropopause with
surface disturbances such as those that occur in the de-
velopment of extratropical cyclones.
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APPENDIX A

Next-Order Interface Condition

The second condition on is given by the O(e) terms1F̃
of the interface condition (24). It is emphasized again
that the weak tropopause displacement assumption al-
lows the expression of this interface condition in terms
of z 5 0 quantities with the evaluation on the tropopause
z i ; eh0(x , y) obtained using the Taylor approximation
(25). The O(e) terms of (24), after considerable manip-
ulation, take the nearly Jacobian form

1u 1 (L 1 sB)
0 1J F 1 cy, 1 h 15 [ B B c

z1
1 0 2 03 F 1 (F ) 2 L Fz E y1 22B

s 1
2 0 2 0 0 01 (L 1 sB) (F ) 1 (w 1 sy ) Fz z3 2 1 2]2c B B

i0
1 1 s

0 0 0 0 01 h J F 1 cy, F 2 (L 1 sB) h 1 Fz z 1 2 6[ ]B c c

5 0, (A1)

where the second and third terms are continuous across
z 5 0. In the above calculation, two particularly useful
identities derive from the tropopause slope s (14) and
the leading-order interface temperature (33)

s{L 1 sB} 5 0t

i
(L 1 sB)

0 0 0u (x, y, 0) 1 F (x, y, 0) 1 Bh (x, y ) 5 0.5 6c

(A2)

Subtraction across the interface reduces (A1) to a con-
dition on the second argument of the first Jacobian term

z1u 1 1
1 0 2 01 (L 1 sB) F 1 (F ) 2 L Fz E y5 1 2B cB 2B

s0
s

2 0 21 (L 1 sB) (F ) 5 constant, (A3)
3 2 62c B t0

where the constant is taken to be zero. Replacing u1 by
its potential representation [(26), (37)] produces the sec-
ond condition for given in (42) where the constants1F̃
C are defined as

s
1 L 1 sB

C 5 2 ;1 5 62c B t

s
2s (L 1 sB)

C 5 2 5 24C . (A4)2 33 25 62c B t
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APPENDIX B

Calculation of the Homogeneous Correction

The nonlinear part of the homogeneous solution 1F̃
is a sum of harmonics

s: A cosKx cosLy exp(2MÏB z )O KL s1F̃ 5 nl 
t: B cosKx cosLy exp(1MÏB z ),O KL t

(B1)

where M 2 5 K 2 1 L2 and the sum is over the wave-
numbers

(K, L; M) 5 (0, 0; 0), (2k, 0; 2k), (0, 2l; 2l),

(2k, 2l; 2m). (B2)

The (0, 0; 0)-mode amplitudes involve the amplitude of
the leading-order tropopause wave h0 (34):

B Bs t2 2 2 2A 5 C A ; B 5 C A ;00 h 00 h8 8

m
C 5 . (B3)h ÏB 2 ÏBs t

The remaining second-harmonic coefficients satisfy the
linear system

 1 21
A  KL

 M L s M L ss t 1 2B2 1 1 2 1 1 KL 1 2 1 2cB c cB cÏB ÏBs ts t 

F15 , (B4)1 2F2

where
2B 2 B C M 1 Cs t 1 22 2 2F 5 C A ; F 5 A . (B5)1 h 28 4

As a final comment, note that the determinant of the
matrix in (B4) is zero if any of the harmonics (B1) has
a vertical decay rate that matches that of the fundamental
edge wave (either 2k 5 m or 2l 5 m). This is the same
perturbative resonance that was noted for the edge wave
by MSR. The implications of this apparent singularity
have yet to be understood and are the subject of current
investigation.

REFERENCES

Bluestein, H. B., 1992: Synoptic–Dynamic Meteorology in Midlati-
tudes. Vol. II. Oxford, 594 pp.

Cunningham, P., and D. Keyser, 1999: The dynamics of jet streaks
in the upper troposphere: Observations and idealized modelling.
Preprints, Eighth Conf. on Mesoscale Processes, Boulder, CO,
Amer. Meteor. Soc., 203–208.

Eady, E. T., 1949: Long waves and cyclone waves. Tellus, 1, 33–52.
Gill, A. E., 1982: Atmosphere–Ocean Dynamics. Academic Press,

662 pp.
Hakim, G. J., 2000: Climatology of coherent structures on the ex-

tratropical tropopause. Mon. Wea. Rev., 128, 385–406.
Held, I. M., R. T. Pierrehumbert, S. T. Garner, and K. L. Swanson,

1995: Surface quasi-geostrophic dynamics. J. Fluid Mech., 282,
1–20.

Hirota, I., K. Yamada, and K. Sato, 1995: Medium-scale travelling
waves over the North Atlantic. J. Meteor. Soc. Japan, 73, 1175–
1179.

Holton, J. R., 1992: An Introduction to Dynamic Meteorology. Ac-
ademic Press, 511 pp.

Hoskins, B. J., and F. P. Bretherton, 1972: Atmospheric frontogenesis
models: Mathematical formulation and solution. J. Atmos. Sci.,
29, 11–37.
, M. E. McIntyre, and A. W. Robertson, 1985: On the use and
significance of isentropic potential vorticity maps. Quart. J. Roy.
Meteor. Soc., 111, 877–946.

Juckes, M., 1994: Quasigeostrophic dynamics of the tropopause. J.
Atmos. Sci., 51, 2756–2768.

Keyser, D., and M. A. Shapiro, 1986: A review of the structure and
dynamics of upper-level frontal zones. Mon. Wea. Rev., 114,
452–499.

Muraki, D. J., C. Snyder, and R. Rotunno, 1999: The next-order
corrections to quasigeostrophic theory. J. Atmos. Sci., 56, 1547–
1560.

Pedlosky, J., 1987: Geophysical Fluid Dynamics. 2d ed. Springer-
Verlag, 710 pp.

Rivest, C., C. A. Davis, and B. F. Farrell, 1992: Upper-tropospheric
synoptic-scale waves. Part I: Maintenance as Eady normal
modes. J. Atmos. Sci., 49, 2108–2119.

Sanders, F., 1986: Explosive cyclogenesis in the west-central North
Atlantic Ocean, 1981–84. Part I: Composite structure and mean
behavior. Mon. Wea. Rev., 114, 1781–1794.

Sato, K., H. Eito, and I. Hirota, 1993: Medium-scale travelling waves
in the extra-tropical upper troposphere. J. Meteor. Soc. Japan,
71, 427–436.

Thorpe, A. J., 1986: Synoptic scale disturbances with circular sym-
metry. Mon. Wea. Rev., 114, 1384–1389.

Uccellini, L. W., and P. J. Kocin, 1987: The interaction of jet streak
circulations during heavy snow events along the east coast of
the United States. Wea. Forecasting, 2, 289–308.

Verkley, W. T. M., 1994: Tropopause dynamics and planetary waves.
J. Atmos. Sci., 51, 509–529.


