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Nearly all analytical models of lock-exchange flow are basedhe shallow-water
approximation. Since the latter approximation fails atl#eling edges of the mutually
intruding fluids of lock-exchange flow, solutions to the $hatwater equations can be
obtained only through the specification of front conditiolmsthe present paper analytic
solutions to the shallow-water equations for non-Boussjiheck-exchange flow are given
for front conditions deriving from free-boundary argungenAnalytic solutions are also
derived for other proposed front conditions—conditionsalhappear to the shallow-
water system as forced boundary conditions. Both sets ofienk to the shallow-water
equations are compared with their counterparts from theed&@tokes equations and a
mixture of successes and failures is recorded. The appsueness of some aspects of
the forced solutions of the shallow-water equations, togretvith the fact that in a real
fluid the density interface is a free boundary, shows the rieedn improved theory
of lock-exchange flow taking into account nonhydrostatfe@s for density interfaces
intersecting rigid boundaries.

1. Introduction

Lock-exchange flow results from the adjustment under gyafitwo fluids of different
densities initially separated by a vertical partition in @ikhontal channel (Fig. 1l1a).
In addition to gravity and pressure-gradient forces, a rhofidock-exchange flow
must reckon with stress at the channel walls, stress andsdifi between the two
fluids and, in cases involving a liquid-gas interface, stefeension effects. Given
the mathematical complexity attaching to these procesisesnore tractable two-layer
shallow-water equations, in which the aforementioned gsees are either neglected or
simply represented, have been applied to lock-exhange fjoRditman and Simpson
(1983; RS), Kellerand Chyou (1991; KC), Klemp, Rotunno akadrBarock (1994; KRS),
Shin, Dalziel and Linden (2004) and Lowe, Rottman and Lin{R005; LRL) among
others. Judging the relative merits of these differing ijagibns of the shallow-water
equations against laboratory data is difficult owing to tifeience of the aforementioned
neglected effects. However the gap between shallow-wékory and laboratory
experiments can be bridged in certain cases by using nuahéniegrations of less
approximate fluid-flow equations as surrogates for laboyatata (KRS; Birman, Martin
and Meiburg 2005). In this article we extend the Boussinegmngity ratio of lighter
to heavier fluidr ~ 1) two-layer shallow-water theory put forward by KRS to thenn
Boussinesq case and then evaluate it and another shalleevtvaory against compatible
(i.e. free-slip, no surface-tension, etc.) numericalgnadions of the Navier-Stokes
equations for lock-exchange flow.
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As the shallow-water equations (SWE) are based on the hydimapproximation,
they are incapable of describing flow with strong horizomaliation, such as at the
leading edges of the mutually intruding interfaces showhign 1a. In order to use the
SWE in such cases, one admits solution discontinuities ppdals to a more complete
physical theory for conditions that apply across them. R&psed using a formula
developed by Benjamin [1968, his Eq. (2.22)] to relate thyhtrgoing front speed
s to its depthh, in a Boussinesq ‘dam-break’ calculation using the two-te§#/E.
Benjamin’s formula, based on mass and momentum balancesaarcontrol volume
moving with a steadily propagating gravity current (e.gm@son and Britter 1979),
givesdy in terms of the height ¢ of the lower fluid well behind the complex flow of
the gravity-current head; in solutions of the SWE, Benjasinntrol volume containing
the gravity-current head is represented by a simple digugity as shown in Fig. 1b.
In their application of the two-layer SWE to the Boussinastktexchange problem, RS
found that the left-going interface (Fig. 1a), which was tefevolve freely, immediately
became multi-valued (RS's Fig. 7c). KRS resolved the Igiteblem by recognizing
that the left-going interface must also be represented bis@odtinuity that satisfies
Benjamin’s (1968) front condition (Fig. 1b); Fig. 7d of KR$/@s the solution of the
SWE for the lock-exchange problem in the Boussinesq limit.

A continuing source of discussion in the literature is thatBenjamin front condition
admits a special dissipation-free solution along with atioorum of solutions having
dissipation. KRS pointed out that the dissipation-freafr@ondition in the SWE would
imply a front speed that is greater than the speed at whiohrrdtion can travel to it from
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FIGURE 1. Schematic of lock-exchange flow based on a) laboratory atad b) typical solutions to the
shallow-water equations. The vertical linezat"0 indicates the lock center where the heavier and lighter
fluids are initially separated; the horizontal channel sale separated in the vertical by a distafceAfter
the release of the lock the heavier (lighter) fluid flows torilgéat (left) at speem} (f;f) with thicknessfzf

(Zlf) measured some distance behind the complicated flow atadegedge.
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the lock center (violating ‘causality’) in both the Bouss#g ¢ ~ 1) and cavity £ — 0)
limits (see KRS’s Fig. 3). On the other hand some laboratovestigators promote
the relevance of the dissipation-free front condition tpeximental flows (e.g. Shin et
al. 2004), while other laboratory experiments (SimpsonBuittler 1979) and numerical
experiments (see Fig. 14 of Hartel, Meiburg and Necker 200®g 16d of Bryan and
Rotunno 2008) find flows consistent with a dissipative fromdition for Boussinesq
lock-exchange flow. For non-Boussinesq conditions<( 1), laboratory experiments
(KC; Grobelbauer, Fannelgp and Britter 1993; LRL) and numericaliktions (Birman
et al. 2005; Etienneet al. 2005; Bonamettiet al. 2008) show that as decreases
from unity, the right-going front of relatively heavy fluidéreases in speed and becomes
more turbulent, while the speed of the left-going front datieely light fluid remains
unchanged and becomes less turbulent.

This latter feature led KC to consider the left-going frosttae realization of the
dissipation-free Benjamin front condition. Following KCRL used two-layer shallow-
water theory to construct the solution between the disisipdtee left-going upper front
and a right-going front obeying the (generally dissipgtiBenjamin front condition
across the range of (Fig. 4b of LRL). The ‘causality’ problem raised by KRS of the
impossibility of information flow in the SWE from lock centér the dissipation-free
front was not addressed.

In the present paper we extend the KRS Boussinesq two-lagdos/-water theory to
apply across the range of As in KRS, the present theory is based on the two-layer SWE
and the application of the Benjamin front condition to thi-land right-going fronts,
respectively. As with the KRS numerical integrations of ®WE in the Boussinesq limit,
the present non-Boussinesq solutions require the diggipBenjamin front condition
across the range €@ r < 1 for solutions that obey causality. We then verify that thes
numerical solutions are unique through an independentt@xelysis using the method
of characteristics. For comparison with the present smhstiwe have also constructed
analytical solutions following the LRL approach descrilagtve. These exact solutions
offer a mathematically firm explanation for the numericalusion features such as the
apparent ‘expansion fans’ and ‘zones of constant state’ dppear. Perhaps more
important is that the exact analysis gives a clear pictutafofmation flow through the
system as seen by the shallow-water theory.

To evaluate the present and the LRL SWE solutions, we haveedawut two- and
three-dimensional numerical simulations using the NaStekes (NS) equations. The
simulations are carried out under free-slip conditionshatdhannel walls and without
surface-tension effects. One effect contained in the N&u#mpus but not in the SWE
is interfacial instability; hence viscous effects are undable as they effect the growth
and ultimate disposition of unstable waves growing on therface. As pointed out by
Benjamin (1968, p. 224-225) the upper gravity current is pletely stable ag — 0
while it is unstable to disturbances of all wavelengthg as 1; on the other hand the
lower gravity current is unstable at amy Consistent with the foregoing arguments,
the present numerical solutions indicate that the chardletminar or turbulent) of the
upper front is a function of both and the relative strength of viscous effects through
the Reynolds numbeRe. For Re > Re.-(r), where Re.-(r) is the critical value for
transition to turbulence, we find better agreement betwherNS solutions with the
present extension of the KRS theory than with the LRL theboyyever forRe < Rer,
the numerical solutions indicate better agreement withLtRé theory than with the
present one.
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Hence we are led to the conclusion that for < Rer(r), the solution to the Navier-
Stokes equations for the lock-exchange problem is outbidSYWE solution space for
solutions respecting the causality condition. Our exaahysis of the LRL SWE solutions
indicates that all information flows from left-going disatfpn-free front inward towards
the lock center. From the point of view of the SWE, the leftagpfront must thus be
viewed as an external agent; that is, the mathematical@mobkecomes a forced- (rather
than a free-) boundary problem.

Numerical solutions of two-layer SWE for non-Boussinescklexchange flow are
described nextin Section 2. Motivated by these numeridatisos, which are consistent
with information flow from the lock center outward, Sectiand®scribes an exact ‘causal’
analytical solution to SWE using the method of charactedgstor reasons listed above,
we give in Section 3b, analytical solutions of the SWE forggrébed frontal parameters
at the left-going front of lighter fluid; these solutions daotmespect ‘causality’ but may
nonetheless be useful descriptions of fluid flow featuresdhabeyond shallow-water
theory. Section 4 compares the SWE solutions to those ofeb&dpproximate NS
equations and, in particular, examines the variation ofsiblations with both density
ratior andRe. A summary and concluding remarks are given in Section 5.

2. Numerical Solution of the Two-Layer Shallow Water Equations

Following RS, KC and LRL, the two-layer SWE equations for flowa horizontal
channel neglecting stress, diffusion and surface tensi@mbe written in terms of the
lower-layer height and velocity; in nondimensional forreslk are

oh oh ou _
o Yugr they 70 21)
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where
_ (L-h)Z—rh(1+h) (L h)R 2
a= u(l —h)2+rh(1 - h) and b= (L= 13+ rh(l—h)? (2.3a,b)

In (2.1)-(2.3),h = h/H andu = u/\/¢g’H, whereh is the depth, ana the velocity, of
the lower layer; the independent variables are z/H andt = z\/g’/H; the reduced
acceleration due to gravity is defined py= (1 — r)g. For future reference, note that
d=d/H =1- h and, by continuityp = v/\/¢g’H = —uh/d. The initial condition is
u(z,0) =0, andh(x,0) = 1 forz < 0 andh(z,0) =0 forx > 0.

As mentioned in the Introduction, RS used a front conditmmepresent the gravity
current at the leading edge of the right-going fluid in a Binessg shallow-water
calculation, while the left-going intrusion was left to év@freely. As evidenced by the
result of that calculation (RS’s Fig. 7d)(z, t) for the left-going interface immediately
became multi-valued far > 0. KRS demonstrated, through an evaluation of the wave-
propagation characteristics at the leading edge of tharthiahce propagating to the left,
that deeper heights travel slower than shallower heighgacé multi-valued solutions
are to be expected, and the application of a front condisaequired. For the present
non-Boussinesq case, the wave propagation in system(@2)is given by

ct = %(u +a)+ %\/(u +a)? — 4(au — bh) (2.4)
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[LRL's EqQ. (3.13)]; settingw = 0 in (2.4) gives

_ | h(1-h)
TV 1-@a-nn (25)

for a disturbance propagating toward the quiescent fluidedeft of the partition. In the
Boussinesq limity = 1 and KRS’s (23) is recovered showing that lower heightgelra
to the left faster than higher ones for> hq = 0.5. Equation (2.5) shows that lower
heights travel faster than higher heights for- h.(r) (wWhereh..(r) increases from a
value of 05 with decreasing) for any finiter # 0 and hence there is the necessity for a
front condition. We note in passing that (2.5) illustratestjone of the many intricacies
associated with moving contact lingShikhmurzaev, 2008, Chapter 5). In the foregoing
argument we are implicitly considering the limits— 1 (lock exchange) and — 0
(cavity) in that order. Taking the limits in the reverse ardi&es the classical one-layer
resultc- = —v/h implying that that the lower fluid takes no notice of the upih&d, and
therefore, of the upper bounding surface.

Following Benjamin (1968), application of mass and momentwnservation across
the front of each gravity current gives

de(2—-ds)(1—-d
vf=—\/ s 1f§f h (26)

for the left-going front, and

heyR—-hs)1-h
P @

for the right-going front.

With the front conditions (2.6)-(2.7), numerical solutsoof (2.1)-(2.2) are computed
across the range of and shown in Fig. 2. Figures 2a, ¢ and e show snapshots at
t = 10 of the interface heigtlit(z) for » = 1.0,0.7 and 04, respectively, while Figs. 2b,
d and f show the corresponding velocitig&) andv(x) in the lower and upper layers,
respectively. Forthe Boussinesq case (Figs. 2a, b), thé@ohas the required reflective
symmetry f(x) = d(~z) , u(z) = —v(~z)]; the frontal parameters,; = d; = 0.3473
anduy = —vy = 0.527 (cf. KRS's Fig. 7d). For the density ratio= 0.7, Fig. 2c
indicates that(x) is no longer symmetric, although the front heights aré¢ sgjlal to
their values in the: = 1 case (Fig. 2a). Moreover the velocity distributions (F2gl),
indicate that the lower-fluid front speed has increasedlenthat of the upper fluid has
remained as it was in the= 1 case (Fig. 2b). With the density ratio reduced to 0.4,
Fig. 2e indicates no change in the thicknésof the left-going front, while that of the
right-going fronth , is reduced, with respect to the= 1.0 and 07 cases; the velocity
distributions in Fig. 2f indicate a further speed increas#he right-going front, but no
change in that of the left-going front. In contrast with the 1.0 and 07 cases, the case
with » = 0.4 has bothh andu independent of for some distance behind the right-going
front.

To aid in the interpretation of the numerical solutions shawFig. 2, we examine
the corresponding characteristic velocitiegu, 1) given by (2.4). Figure 2b shows for
ther = 1.0 case that &< ¢* < w and, by symmetryy < ¢~ < 0. With the density ratio
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FIGURE 2. Numerical solutions of the two-layer shallow water edret with the front conditions (2.6)-
(2.7) forr = 1.0,0.7 and 04. For eachr, the height of the interface is displayed in a), ¢) and e), thed
layer and characteristic velocities (2.4) are displayel))jr) and f).

r = 0.7, Fig. 2d shows that, as in the case with 1.0, 0< ¢* < u, but thatc* is closer
in magnitude ta: throughout the interval between the fronts. On the othedlianc—,
Fig. 2d forr = 0.7 shows that < ¢~ < 0forz < 0 and that~ > 0 forz > 0, indicating
that no information can travel from the right to the leftzof= 0. At a density ratio of
r = 0.4, Fig. 2f shows that* > wu, while the distribution of:~ is qualitatively the same
as for ther = 0.7 case.
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3. Solutions of the SWE by the Method of Characteristics

The solution to the lock-exchange problem shares with thssatal piston and dam-
break problems the property that the governing equatiomst €onditions, and the initial
conditions are without any implied space or timescales. fesalt, fort > 0, solutions
must only depend on the similarity variablg't, and the time evolution is simply a
linear-in-time dilatation of the spatial structure. Ingdlsiection, the spatial structure, as a
function of z /¢, is determined by the method of characteristics.

The hyperbolic equations (2.1)-(2.2) can be written as

(Z)f{z Z} (Z)xzﬁ (31)

where the characteristic velocities (2.4) are obtained as the eigenvalues of the matrix.
Multiplication by the left-eigenvectou(— c¢*, —h) gives the Riemann invariant relation

dh du
— + _ — =
(a — ) o h o 0 (32)
where the derivatives are along characteristic trajeesqor rays’) defined byz* /dt =
c*. As the Riemann invariant relation has no explicit depeedesnz or ¢, it can be
integrated as the ordinary differential
du* _a—c*
i (3.3)
giving the dependence af- (k) along the ray:*(¢). In the present application we will be
concerned with solutions of (3.3) with starting values fof, () given by the left-going
frontal parametersu(,, hy,) and for ¢.—, k) given by the right-going frontal parameters

(up,hR)-

a. Free-boundary solutions

The locations of the left- and right-going fronts that detithe propagation of the lock-
exchange flow into regions of the quiescent fluid are detexthirere by free-boundary
arguments. First, conservation of mass dictates that timesfmove with the fluid speed;
hence, on a ray diagram, the right-going front is the everd 4i/t = ug, and the
left-going front is the event line/t = v;,. Second, the assumption that the Benjamin
relation applies provides another conditioprug = B(hg) (2.7) for the right-going
andvy, = —B(dy,) (2.6) for the left-going front. Determination of both friah variables,
(ug,hg) or (vy,dy), requires a third condition. There are two possible saeador
completing the front specification, and we refer to thesdiasharacteristic Benjamin
front and thetime-like Benjamin front These are defined below, where the right-going
front is considered first.

The right-going front speed must satisfy the inequality

¢p <up <cp (34)
to satisfy ‘causality’, that is, forbidding the front to gragate faster than the right-going

characteristic speed, and requiring that the front haveentte on the trailing region of
disturbed fluid. The case of equality in (3.4) defines the atiaristic Benjamin front,
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where the event line coincides with the right-going chagastic line. In this case, the
third front condition is

up =cp =c (ug, hg;r). (3.5)
It follows from the characteristic equation (2.4) that {3i$ satisfied only when the
coefficientb(ug, hr; ) = 0, so that from (2.3b),

rud=(1-hg)*. (3.6)

Simultaneous solution of (3.6) with the Benjamin front citiodh (2.7) gives the unique
solution
Vrup ~05273 ; hp~0.3473 (37)

for the frontal parameters. It may be verified from (2.4) floafrontal parameters (3.7),
cp < Cp, as required by (3.4).

RFor the time-like Benjamin front, the frontal parameters determined by a third
condition that is dictated by an inbound (from the left) dweristic. In this case the
front speed:  satisfies the strict inequality

cp<up<ch (3.8)

implying that thec*-rays from the left-going front now propagate through thetutbed
fluid and intersect the right-going front. Therefore in toase the right-going front
parametersuy, hr) derive from the solution of (3.3) fat* (k) for rays emanating from
the left-going front together with the condition (2.7).

Turning now to the left-going front, the inequality analogdo (3.4) is

c; <wvp <cp. (3.9)
A left-going characteristic Benjamin front is thus defingd b
v, =cp =c (ug,hp;r) (3.10)

and gives the third determining condition. Following thengdogic as for the right-going
front, the condition (3.10) leads to the relation

v? =(1-dp)? (3.11)

in analogy with (3.6). For the left-going characteristiarft then, combining (3.11) with
the Benjamin front condition (2.6) gives the numerical siolufor the frontal parameters

v, ~—-05273 ; dj ~0.3473 (312)

in analogue with (3.7) except in this case the result is iedepnt ofr. The upper-fluid
values (3.12) correspond to the lower-fluid values

u; ~02806 ; hy ~0.6527. (3.13)

There is also the possibility for a left-going time-like Bamin front. In this case,
the third condition would be obtained by an inbound charéstte (from the right). Our
calculations ofc; usinguy, = u~(hz) from the solution of (3.3) show, however, that

there are no solutions for which the case:pf< vy is physically realized. The analysis
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of ¢~ from the numerical SWE solutions shown in Figs. 2d and f isseziant with this
result.

We are now ready to construct solutions to the SWE by the ndedhcharacteristics
and begin with the Boussinesq case=(1.0). As a starting point we assume that both
left- and right-moving fronts are of the characteristic penin type and that therefore
on a ray diagram the region of disturbed flow lies inside theeag < z/t < cj,.
Figure 3a shows the Riemann invariant(h) that emanates from the right-moving front
[where (., h) = (ug, hr) given by (3.7)] together with the Riemann invarian{h) that
emanates from the left-going front [where (h) = (uy,, hy) given by (3.13)]. Thereisa
unique crossing point wher€ (h.) = u= (he) = uce, whereu, ~ 0.44 andh. = 0.5. This
crossing point thus defines two cones of influence on a rayaagthe right-moving
front influences the region; < z/t < c}% while the left-moving front influences the
regionc; < x/t < ci, wherec; = ¢ (uc, he) andci = c*(ue, he). The overlapping
zones of influence thus define a coe < z/t < ¢ whereh = h. andu = ug, i.€,

a "zone of constant state". Referring to Fig. 4a, the uppeepshows this "zone

of constant state" (thin line segment) in termsh¢f/t) and corresponds to the cone
c; < x/t < ¢} inthe ray diagram directly below. The other curves in Fig.aBathe
characteristic velocities and the upper-layer velocitiesesponding to their respective
Riemann invariant velocities™ between their respective launch points and the crossing
point. Figure 3a indicates that the regiop < z/t < ¢; is uninfluenced by the~(h)
Riemann invariant and hence that region must be an expafasiofhe solutiorh(z /t)

can be deduced parametrically from

z/t=c [u*(h)] . (3.14)

Likewise the regiorne, < z/t < up is also an expansion fan with the solution given
parametrically by
z/t=clu"(h)] . (3.15)

The solutionh(z/t) for these two expansion fans is shown by the thick line segsia
the upper panel of Fig. 4a. Finally, the rays are computedshodn as thin lines in the
lower panel of Fig. 4a. It may be verified that the analytiadlon for h(xz/t) shown
in Fig. 4ais essentially identical to the numerical solatghown in Fig. 2a.

Following the same procedure as for the Boussinesq cas&xteanstruct the solution
for the non-Boussinesq case 0.7. Figure 3b shows that thedependence in the right-
going front speed (2.7) produces an upward shiftiiih) so that the intersection with the
(unchangedy*(h) shifts toh. ~ 0.3907 Otherwise the logic of the solution construction
is identical to the Boussinesq case, and is illustratedgn &b. In this case with = 0.7,
the zone of constant state shifts towards the right-goingtfand there is a narrowing
of the right-going expansion fan. Again the analytical siolufor h(z/t) shown in the
upper panel of Fig. 4b is essentially identical in every tlédtathe numerical solution
shown in Fig. 2b,

With further decreases in the right-going expansion fan is eventually eliminated at
a critical value ofr wherec; = up. At this critical value ofr., (~ 0.5821) however, the
solution must undergo a change of spatial characterr For,, the intersection of the
two Riemann invariant curves (h) andu~ (h) occurs ab < 0.3473 whichis less than the
value for the right-going characteristic Benjamin fromt.dddition, it is also found that
¢y, would exceed the propagation spegglof the assumed characteristic Benjamin front.
The resolution of these conflicts is that the right-goingifrparameters now satisfy the
time-like condition (3.8). Figure 3c shows th&(h) Riemann invariant curve extended
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c(u*)

u*=u

FIGURE 3. Solution to the Riemann invariant equation (3.3)d81(h) for density ratio- = a) 1.0. b) 0.7
and c) 0.4. Starting values for the integrations of (3.3)iadécated by the pointa™ = up,h = hp and
u" =wuy,h="hy.Ina)andb),{c, hc) denotes the crossing point wher&(h) = u~ (h) and the thick solid
lines indicates the parts of thé" (k) solution curves relevant for calculating the correspogdiharacteristic
velocitiesc™ (u*), ¢*(u ™) and upper-layer velocities™ (long-dashed curves). In c) there is no crossing
point which indicates a change in character of the solution.
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FIGURE 4. Analytical construction of the solution to the shallomtgraequations for density ratio= a)
1.0, b) 0.7 and ¢) 0.4. For each case the height of the inetf@apper panel) is plotted versus the combined
coordinater /¢ with the corresponding ray diagram given directly belowa)rand b) the zone of constant
state wherén(z/t) = he (thin line segment) is located within the cong < z/t < c¢ indicated in the
ray diagram, and the left and right-side expansion fansKiime segments) are defined by the ray-diagram

conesc; < z/t < cg andeg < x/t < c}_—i, respectively. In c) the right-side expansion fan disappea
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to the valuehp ~ 0.2725 which, withup ~ 0.8203, also satisfies the Benjamin front
condition (3.7). The right-going front conditions are nolaaconstant-state conditions.
Figure 4c (lower panel) illustrates how the disappearahtesoright-moving expansion
fan also requires that rays launched from the left-goingtfto catch up to the right-going
front as inbound rays. All rays of the type carry constant values bfandu. We note
that forr < r., the ray diagram is analogous to that of the classic "damkbrg@ablem
(Whitham 1974). As with the previous two cases the anallyolution for the height
h(x/t) in the upper panel of Fig. 4c matches the numerical soli@wn in Fig. 2c.

A summary of the right-going frontal values éfz; andug are shown in Fig. 5.
Solutions forr > r. ~ 0.5821 have a characteristic Benjamin front, while fot. .,
have a time-like Benjamin front. As can be inferred from Fg.there are two critical
features that coincide at the value: (a) asr — rq- from aboves! — ug (right-going
expansion fan disappears); and (byras: rc, from below,cj, — up (rays emanating
from left-going front become parallel to right-going-ftogvent line). These conditions
imply that the solutions represented in Fig. 5 are the unisplations assuming a
left-going characteristic Benjamin front and continuootigons onvy, < z/t < up.
Solutions for all- have a left-going characteristic Benjamin front with fralarameters
given by (3.12)-(3.13).

Solutions assuming a left-going time-like Benjamin frootmbt lead to a consistent
construction of a spatial structure. Consider first the liyptical case of a right-going
time-like Benjamin front together with a left-going timi&é Benjamin front: this case
would give rise to a contradiction because both Riemanrriawts«* (1) cannot satisfy
the same end conditionst(hg) = ugp andu®(hy) = uy, [sincec [u~] #Z ¢*[u*], the
'+ and - members of (3.30) are different]. In the hypotloatl case of a right-going
characteristic Benjamin front together with a left-goifgée-like Benjamin front, the
latter would requirez; < vy, (rays emanating from right-going front intersect the left-

going front) which occurs only for the unphysical parameegimer > (re)~1 > 1.
Thus, the characteristic solutions as described here arartlue nonlinear solutions
that are continuous ony, < x/t < up.

b. Forced-Boundary Solutions

In this subsection we analyze the case considered by LRL afsipdtion-free, left-
going front characterized by the front conditions

UL=—UL=—1/2 ; szhLzl/Z (316)

satisfying the Benjamin relation (2.6). The charactarisppeeds (2.4) associated with
these conditions satisfy the inequality < ¢; < ¢}, and hence the rays from the
left-going front are both directed into the lock exchanggae implying that the frontal
motion is not influenced by the flow within the lock region. Téfere, from the point
of view of the SWE, (3.16) violates ‘causality’ as definedab(or further discussion,
see§db) and (3.16) must be considered a forced-boundary conditiime latter acts
mathematically similarly to an initial condition and is comanly referred to as apace-
like curve (ref Whitham) on a ray diagram.

The construction of solutions to the SWE by the method of atteristics presented
above is changed only in that conditions (3.12)-(3.13) emaced by (3.16). For the
range of values & r < rq1 ~ 0.5532, the Riemann invariant analysis leads to the
right-going front being of the time-like Benjamin type. Ases in the example shown
forr = 0.4 in Fig. 6a, the spatial profile has a constant-state gesetbgtthe propagation
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o

FIGURES. Right-side-front a) speatlr, and b) height , as a function of. The present free-boundary
solution (solid line) has two segments separated by thetdotar¢ = 0.5821 indicating the density ratio
dividing characteristicr{ > r¢r) from time-like ¢ < r¢r) Benjamin fronts. Solutions with the forced-
boundary conditiom.;, = hj, = 1/2 and free-boundary conditions for the right-side fronsfuzd line) have
r = rerp = 0.5532 indicated by the star; the square atrq-» = 0.8953 is the limiting density ratio beyond
which continuous solutions do not exist for these assunmutdt conditions. The LRL solutions are same
as the foregoing for < 0.5532 but differ forr > 0.5532 (indicated by the solid gray line). The front-speed
data from the present simulations are indicated by the ‘B)(@nd the gray x’ (3D); data from the 2D
simulations of Bonometti et al. (2008) are indicated by tineles.
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FIGURE 6. Analytical construction of the solution to the shallom@raequations for the forced boundary
conditionu, = h, = 1/2 and free-boundary conditions on the right-side front jor & 0.4 and by~ = 0.7,
¢) LRL solution forr = 0.7 with forced-boundary conditions at both left and rightnfia
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of the left-going dissipation-free front forl/2 < x/t < ¢; (note that the andc~
rays are both directed into the lock-exchange region). @iise, the spatial structure of
the solution forc; < z/t < up is essentially like the free-boundary solution (Fig. 4c),
consisting of an expansion fan and a constant-state fallpwie right-going front.

At larger values of .1 < r < r» ~ 0.8953, the spatial profile of the solution again
has a constant-state attached to the dissipation-freefisbowed by the two expansion
fans typified by the right-going characteristic Benjamiorfrcase (e.g. Fig. 4b). This is
illustrated for the case of = 0.7 shown in Fig. 6b. However, unlike the free-boundary
solutions, there is a second critical valuergf, ~ 0.8953 where the central constant-
state coincides with the dissipation-free-front conaisioThis occurs where the Riemann
invariant satisfies —(1/2) = 1/2. The implication of this for values efapproaching the
Boussinesq case,,» < r < 1, is that solutions would seem to requirerays that cross.
Mathematically, this situation is typically resolved byetappearance of a shockline at
which two inbound rays can meet. However, we choose not wygithe analysis further,
as our computations suggest that the dissipation-fre¢ isarot realized at these larger
values ofr. The solution for {.z(r), hg(r)] using the forced-boundary condition (3.16)
is plotted on Fig. 5; clearly the right-going front is onlygtitly affected by the change
in the left-going-front condition.

Finally we consider the solution procedure described in [(RReir§3). LRL solve the
Riemann invariant equation (3.3) faf' (k) starting from the left-going condition (3.16)
and look for a crossing with the Benjamin relation (2.7) tdvarat the right-going frontal
parametersug, hr). Forr < rq1 the LRL procedure is the same as the procedure that
leads to the flow shown in Fig. 6a. However for- r..; we find thate} < up implying
that rays emanating from the left-going front do not rea@hribht-going front; hence
in our construction of the solution for this case, the ladtrgy rays from the right-going
characteristic Benjamin front are necessary to completesttiution through the right-
side expansion fan (Fig. 6b). Althoughitis possible to ¢ the solution for > r..q
(Fig. 6c) following the LRL procedure, one would need somggital basis external
to the SWE for assigning the derived frontal parametefs { ) which, as for the left-
going front, must be considered a forced-boundary comditio the limit asr — 1, the
LRL procedure produces the solutior= h = 1/2 for —-1/2 < x/t < +1/2 (LRL, their
Figs. 11-12) and versions of the latter may be found in tleediure dating back to the
1940s (Yih, 1965, pp. 134-138). As shown in Fig. 5, theretieldifference inug(r)
produced by the present, the modified LRL or the LRL solutimthe SWE; the major
difference is inh g (r) for r¢r < r < 1.0.

4. Numerical Simulations

To assess the solutions of the two-layer SWE presented ipréhvéous sections, we
proceed here to more general equations of fluid motion. Irpteeent work we follow
Etienneetal. (2005) who give the equations of motion for a mixture of tnodmpressible
fluids of different densities. The fluid density is given py="p,® + p;(1 — ®) or,
nondimensionalizing by the density of the heavier flpid p = r + (1 — r)® , where®
is the heavier-fluid volume fraction ang is the density of the lighter fluid. Using the
same nondimensionalization as used for the shallow-wgteat®ns ir§2, the equations
expressing conservation of mass of the mixture, mass ofg¢hset fluid and momentum
of the mixture are, respectively,

oui _ (1-r) Do®
ox; r+(1—r)® Dt’

(4.1)
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ou_ 1 5o
Or; ReSc axg

(4.2)

and
Dul _ ap

Dt __a—xi Rea [>\( )( Z_]

16”‘?5”)] e (4.3)

whereRe = p,UH/n and Sc = (n/ph)/ﬁ are respectively the Reynolds and Schmidt
numbers, is a constant reference value for the dynamic viscositig the diffusion
coefficient (assumed constant) abid= /(1 —r)gH. Etienneet al. (2005) let the
dynamic viscosity = nA\(P) to allow for either constant dynamic viscosity € 1) or
constant kinematic viscosith\[=r + (1 — r)P] .

Seeking solutions that are as close as possible to the @iggication described by the
two-layer SWE, we will focus on the limiting caske — oo, signifying zero cross-species
diffusion. With the assumption of constant dynamic visgo&qs. (4.1)-(4.3) simplify

to 5
U _
D2, =0, (4.4)
Dp _
and

Du; _ 0p . 1 0%y P <
pﬁt__a—:nfﬁ—ax? ——1_T5z3- (4.6)

Equations (4.4)—(4.6) are the same as solved by Bonametalet(2008) where it is
noted (p. 451) that there is in effect a finite valueSef~ O(10%) due to the limitations
of finite-differencing across the sharp change iat the fluid-fluid interface. Again, in
conformity with the SWE, we will assume stress-free condiiat the upper and lower
boundaries. Hereinafter (4.4)—(4.6) are referred to adlthaer-Stokes (NS) equations.
As noted in the Introduction and in previous work, the irded separating the heavier-
from the lighter-fluid flows is generally unstable; hence @xpects a transition to
turbulence beyond a critical value &k, and therefore, turbulent stress between the two
fluids. To avoid turbulent stresses, one might restrictnéitie to lowerRe (laminar)
cases; however for a lode flow there would then be viscous stress between the two
fluids. Hence stress between the fluids is a generally unabtédlifference between
the NS and the SWE solutions for lock-exchange flow. In thesgume paper we will
present solutions ranging from turbulent to laminar flowthaligh the lock (Fig. 1) is
in principle two-dimensional, turbulent motion is fundamtedly three-dimensional and
therefore we will explore solutions to (4.4)-(4.6) for \&trons in ¢, Re) in both two and
three dimensions. Details on the numerical-solution tepke) grid resolution, solution
verification, etc. are given in the Appendix.

a. Results and comparison with the SWE solutions

To facilitate comparison of the SWE solutiong3) with the NS solutions, it is
convenientto plotthe latter as a functiongf at a time long enough for the establishment
of a statistically steady-state solution. Plotted in this/wong-wave features of the NS
solutions stand out more clearly, and shorter-wave featugech as the leading-edge
gravity currents are compressed, in analogue to the wayatteeyepresented in the SWE.
Figures 7a, ¢ and d show the density fig{a /¢, =) from two-dimensional simulations of
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the cases = 1.0,0.7 and 04, respectively, withke = 10, while Figs. 7b, d and e show
the y-averaged density fielg(z/t, z) from three-dimensional simulations for the same
cases (all at = 16). Beginning with the Boussinesq case 1, Fig. 7a indicates flow
instability along the interface between the advancingtBpinowever, without the ability
to produce a turbulent cascade to smaller scales, the flownsmted by large-scale
'billows’. In three dimensions, Fig. 7b shows that the twiordnsional instability is
able to break down into three-dimensional turbulence whiéfases the interface. For
the non-Boussinesq case= 0.7, the two- and three-dimensional simulations in Figs.
7c and d, respectively, also indicate turbulent flow alorggititerface with a suggestion
of a reduced level of turbulence for the left-going front. viéwer forr = 0.4, the
two- and three-dimensional simulations in Figs. 7e anddpeetively, indicate laminar
flow for the left-going front and turbulent flow for the riggting front. This simulated
disappearance of turbulence from the left-going front witsreasing has been found in
the laboratory and numerical studies revieweglin Overlaid on the three-dimensional
numerical solutions are the present and the LRL solutiorth¢oSWE. Some general
points of comparison follow.

Both the present and the LRL solutions of the SWE agree withN® solutions in that
the speed of the left-going front is independent @fhile that of the right-going front is
inversely proportional te [the NSu () data points, plotted in Fig. 5b, are generally
slower than the SWE solutions]; the NS solutions all haye- —0.5 as in the LRL SWE
solution as compared withy, = —0.527 in the present SWE solution. The present SWE
solution agrees with the NS solutions in that the interfamgegally slants from the upper
left to the lower right in all cases while the LRL solution apaches a level interface as
r — 1. In both SWE solutions the right-going front thins with desing- in agreement
with the NS solution. We note that the only 'zone of constaates that clearly emerges
in the NS solutions is the one attached to the left-goingtffonr = 0.4 in agreement
with the LRL solution; otherwise the NS solutions exhibitiaterface that slopes from
upper left to lower right approximately linearly in the \alnlez /t. Denoting the height
of the middle density contour by and lettingn = z/¢, this linear dependence can be
expressed as,

B =hy, = (b — hg) " (47)
NR —NL
Although it is difficult to identify unambiguously the paraters in (4.7) from the NS
solutions, it seems clear that, for these solutions iith= 10%, h; decreases with,

reaching the asymptotic IimﬁL =1/2 between = 0.7 andr = 0.4.

b. Discussion

In our judgement, the foregoing NS-SWE-solution comparigalicates only limited
success for the SWE solutions. Aside from the gross agremsmeted above, it seems
clear there is an unfavorable comparison of the SM¢E/t) point by point with the NS

h(z/t). The only place where such a comparison is reasonablydaleis for the left-
going front forr = 0.4 for the LRL SWE solution. However even in this case it must be
recalled that the condition (3.16) is externally 'forced’that there are no characteristic
curves that reach the event lin¢t = —0.5 from the lock region (see Fig. 6). In the NS
solution the evolving interface is obviously a free bourydas information must come
from the lock region. One can reasonably infer that localhyoinostatic effects must
produce a propagation speed faster than that supportecelWE for the conditions
(3.16), however a more precise mathematical model for tiéxteis unknown to the
authors.
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b)r=1.0, 3D avg

c)r=0.7,2D d)r=0.7,3D avg

e)r=04,2D fyr=0.4,3D avg

x/t x/t

FIGURE 7. Navier-Stokes simulations of lock-exchange flow in twmelnsions for density ratios =
a) 1.0, ¢) 0.7 and e) 0.4 and in three dimensions-ferb) 1.0, d) 0.7 and f) 0.4. Shown from the three-
dimensional simulations is thg-averaged density field. The three contour intervals dygalan all plots
are 0.1, 0.5 and 0.9, with the middle value empasized. Odeslathe three-dimensional solutions are the
present solutions to the SWE (solid gray line) and thosegwsegp by LRL (dashed gray line).
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Accepting that there is an inherent tendency for the leftigdront to satisfy the
conditions (3.16), we investigate the conditions underclhhis occurs in the NS
simulations. The tendendy;(r) — 1/2 with decreasing: is also accompanied by
a decrease in turbulence at the left-going front (Fig. 7).esSEhresults suggests a
transition with decreasing from a NS solution more akin to the present SWE solution
(hy, = 0.6527 at a dissipative Benjamin front) to one more akin to tR& ISWE solution
(hr, = 0.5 at a dissipation-free Benjamin front). To reinforce thépove show in Fig.

8 the curvep(x, z) from the three-dimensional simulations (at 16) together with the
potential-flow solution found in Benjamin (1968, Hj4.3). A comparison across the
range ofr shows that, in the absence of turbulence (Fig. 8c), the N&ieok closely
approximate the Benjamin potential-flow solution; howewes shown in Fig. 8a, in
the Boussinesq case turbulence develops behind the 'headliging a departure from
the Benjamin potential-flow solution and a transition to ebtient wake of reduced
thickness. Somewhat counterintuitively it is the more wist solution that approaches
the potential-flow (inviscid) Benjamin solution. Indeediaasing the Reynolds number
to Re = 10 for this case of- = 0.4 indicates instability and turbulence at the left-going
front and a solution more akin to the present SWE solutiog.(Bi). Hence there is a
strong indication from the present NS solutions that theadtar of the left-going front

a)r=1.0, 3D avg

b)r=0.7,3D avg

c)r=0.4,3Davg

_1- \

rel

FIGURE 8. Across-channel-averaged density contouds @5 and 09 plotted as a function of the
distance relative to the left-going fronmt.; at t= 16 from three-dimensional Navier-Stokes simulatiohs
lock-exchange flow for = a) 1.0, b) 0.7 and c) 0.4 which correspond, respectivelffigs. 7b, 7d and 7f.
Overlaid is the interface as computed from Benjamin’s paaéflow solution. The dotted lined denotes the
thickness B47 for the left-going front according to the present theory
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FIGURE9. As in Fig. 7e, except foRe = 10°; analytical solutions overlaid as in Fig. 7f.

depends on a critical Reynolds number that is a function &orr ~ 1 theory indicates
the upper left-going current is unstable to disturbanceslofiavelengths, but that as
decreases from unity, the longest wavelengths are stathiBenjamin 1968, p. 224-225;
LRL, their Fig. 15a). Since viscous effects are strongestashorter wavelengths, and
since longer wavelengths become stablerfer 1, it stands to reason that instability is
suppressed for combinations of smaltesind smallerRe; the evidence from Fig. 8c is
that viscous effects are large enough to suppress turlritmricot large enough to cause
major departures from Benjamin’s potential-flow solutionif = 0.4 andRe = 10°.

The right-going frontal parametery(r) (Fig. 5a) from any of the SWE solutions
compares rather well with the present NS solutions as wethase produced in 2D
simulations by Bonometti et al. (2008) over a wider range-.ofThere is, however,
significant disagreement between the present model and Rhenhodel right-going
frontal parameteh i (r) for » > r..; where the latter producés; — 1/2 asr — 1. In
the latter case we believe the present model is closer to $ediution in that Fig. 7b
shows a significant overall tilt (from upper left to lower iy of h(z/t) rather than the
level interfaceh(x/t) = 1/2 predicted in the LRL SWE solution (see their Figs. 11-12
with r = 1).

5. Summary and Conclusions

Although the general sense of the circulation in lock-exdesflow is easily deduced
from the initial baroclinic distribution of density and jgsure, more precise detail on the
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motion and nature of the evolving interface requires a fflod model. In the present
work we reviewed and advanced analytical models based ahdllw-water equations
for non-Boussinesq lock-exchange flow. These analyticaletsowere then compared
with their counterpart numerical solutions based on thei®teStokes equations.

Nearly all of the existing analytical models of non-Bougsig lock-exchange flow are
based on the shallow-water approximation. Since the lafiproximation fails near the
leading edges of the mutually intruding flows (Fig. 1), frenohditions must be given at
both left- and right-going fronts in order to find solutionghe shallow-water equations.
That a variety of such solutions exist in the literature ie thuthe individual investigators
choice of front conditions (e.g. KRS and LRL); furthermomritting discontinuous
solutions between the two fronts gives an even greatertyafesolutions (e.g. KC; see
Fig. 4a of LRL). In KRS the shallow-water equations were sdlmumerically for the
Boussinesq lock-exchange problem under the conditiortstitlealeft- and right-going
fronts satisfy the Benjamin front conditions (2.6) and j2r@spectively, and that the front
is free boundary influenced by the motion within the lock oedi.e. it obeys ‘causality’).
The present paper has extended the KRS numerical solutiatms/er non-Boussinesq
flows (Fig. 2).

Using the method of characteristics, we have found exadytce solutions (Figs.
3-5) that verify the numerical solutions of the shallow-gragquations given here and in
KRS. They also reinforce the finding that only solutions vilitmtal parameters implying
dissipation at the fronts obey ‘causality’ in the shallowater equations. However it has
been noted in both laboratory and numerical experiment#itbdeft-going front becomes
less dissipative, taking the form of a potential-flow sauatfound by Benjamin (1968),
asr, the ratio of lighter- to heavier-fluid density, decreasésllowing LRL we have
found analytical solutions of the shallow-water equatibgsmposing the dissipation-
free condition on the left-going front. As noted in KRS, thissipation-free front
moves at a speed greater the shallow-water-equation waetsnd hence, from the
point of view of shallow-water theory, must be consideredraéd-boundary condition.
Forr < rqp = 0.5532, our solutions assuming a left-going dissipatioe-frent have
rays emanating from the left-going front that impinge ontigét-going front and thus
determine the right-going frontal parameters; these mwigtare the same as those of
LRL (Fig. 6a) . Forr > r..1 we find that rays emanating from the left-going front do not
reach the right-going front and that the solution must be meted with a right-going
expansion fan (Fig. 6b). Notwithstanding that the leftrgpiays do not reach the right-
going front forr > r..1, LRL continue to look for the intersection of the solution to
the Riemann invariant equation (3.3) with the Benjamin freondition (2.7) to find the
right-going frontal parameters; we have constructed dicalysolutions (Fig. 6c¢), with
the understanding that these must be regarded as solutiansich both the left- and
right-going frontal parameters represent forced-boundanditions.

In an attempt to authenticate the various solutions to ta#isk-water equations, we
have carried out both two- and three-dimensional numesoaltions of the Navier-
Stokes equations for relatively large Reynolds numisar £ 10%), very large Schmidt
number G¢ >> 1) and free-slip conditions at the upper and lower boundinfpses.
For Re = 10* andr = 1, the interface separating lighter and heavier fluid isegaity
turbulent; however, as found in recent numerical studies |eéft-going front becomes
less turbulent with decreasimg In the present simulations witke = 10%, the left-going
front is essentially laminar at= 0.4 (Fig. 7e, f) and closely approximates the Benjamin
potential-flow solution (Fig. 8c). A further experiment lpéeg » = 0.4 but with a larger
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Re shows that the left-moving front is again turbulent (Fig. stiggesting there is a
critical Re.r(r) that determines the character of the left-going front.

Comparison of the present (free-boundary) with the LRLdéal-boundary) solutions
of the shallow-water equations with their counterpart nricaé solution of the Navier-
Stokes (NS) equations produced mixed results. Both the drekforced solutions
reproduced the NS-solution features of left-going fropgametersy(;,, d; ) independent
of r, right-going front speed. increasing withr and right-going front height.
decreasing with-. The present free-boundary theory produegd= —0.527 while
the forced-boundary theory prescribed = —0.5 which agrees closely with the NS
solutions. On the other hand, in the limitas- 1, the forced-boundary theory gives the
level interfaceh(z/t) = 0.5 between the left- and right-going fronts, while the présen
free-boundary theory gives an interface that is tilted flomer right to the upper left
implying that bothd;, andh;, are less than.8 in agreement with the NS solutions. We
noted that the only place where the NS solutions producecha @b constant state is
in association with the forced-boundary dissipation-fireat. Both free- and forced-
boundary theories gives very similar predictionsdgy(r).

In the generally nonhydrostatic NS solutions, the evohvimgrface is of course a
free boundary whose motion must be influenced by the flow inldbk region. We
are unaware of an analytical theory taking account nontsdtia effects and a density
interface intersecting the rigid surfaces that can be usegkplain the evolution from
t = 0 to the time when the steadily propagating fronts are éskadal in lock-exchange
flow. In addition to explaining how information flows from thark region to the fronts,
such a theory may also shed light on why the the upper-froe¢dp; ~ —0.5 across
the range of- while the upper-front.;, clearly varies withr in the NS solutions (Fig.
7). It may also explain why NS front speeds are relativelynsitive to the interfacial
dynamics—both two- and three-dimensional simulationgh\wery different versions of
interfacial turbulence) give surprisingly similar pretitbmis for frontal parameters (Fig.
5a).

Appendix. Details of the Navier-Stokes solver

Numerical integration of the Navier-Stokes (NS) equati@n)—(4.6) requires solution
of an elliptic equation to determine presspreSolution technigques can be expensive in
three dimensions with resolution high enough for adequaitsdolved direct numerical
simulation (DNS), and can be difficult to implement effeetivon modern distributed-
memory computing systems. As an alternative, we replacm#ss-continuity equation
(4.4) with a prognostic equation for pressure. This procedliminates the need to solve
an elliptic equation, but introduces the need to accounafmustic waves. The latter
problem is addressed in the present study using the proeelbweloped by Klemp et
al. (2007). Our derivation of an appropriate pressure eégudbllows Chorin (1967);
herein, we assumeis a function ofp only, and we invoke an artificial speed of sound
¢s = dp/dp, then using (4.4)—(4.5) we find

Dp _ 2 0u;

Dt BT (933‘1 '

We setcs = 10U to ensure that acoustic waves propagate much faster thdlowhef
interest.

The time-integration method and spatial discretizatioliofo Bryan and Rotunno
(2008, p. 548) except the subgrid turbulence parametenraf KRS is replaced by
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3D simulation, t =8

3D simulation, 3D avg, t=7

-4 -3 -2 - 0 1 2 3 4

experiment, shadowgraph image, t =7

FIGURE Al. Direct numerical simulation of a Boussinesq lock-exaylaboratory experiment.

explicit stress-divergence calculations [second termigint side of (4.6)]. The domain
extends fromx = -9 to x = +9 forr = 0.99, fromz = -9 tox = +11 forr = 0.7,
and fromz = -9 toxz = +135 for » = 0.4. The initial “lock” is located at: = 0. All
simulations extend frony = Otoy = 1 andz = 0 to z = 1. Grid spacing is 1/320
in all directions. Following previously published guideds for consistency in DNS
between resolution anfle (e.g., section 2.1 of Moin and Mahesh 1998), this resolution
is considered sufficient for our nominal settifRg = 10°.

Pressure at= 0is determined using (4.4) and (4.6). Becawgée= 0) = 0 everywhere
andp(t = 0) is a function ofr only, then the elliptic equation that appliestat O is

% 10p0p,

S =0
0x2 pdxdxr 022 7
which is solved using successive over-relaxation.

To allow for development of three-dimensional motion in 3ibhgations, small-
amplitude random horizontal-velocity perturbations atéex to the initial state. Slightly
higher amplitude perturbations are insertedvat< 0.1 to crudely replicate laboratory
experiments in which turbulent motions are created by almerpoval of a partition at
t~0.

The solver is evaluated in two ways: comparison against arddbry result, and
comparison against previously published numerical sitraria. For the first evaluation,
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we run a three-dimensional simulation and compare agaimestBoussinesq lock-
exchange experiment of Shin et al. (2004; SDL) (their Fig@Q)r numerical simulation
usesr = 0.99 andRe = 10%, similar to values for SDL's experiment. No-slip boundary
conditions are used for this simulation. Results=af7 are shown in Fig. A1, wherein the
upper panel shows a view of the height of the middle densitiasa and the middle panel
showsp(z, z) from the numerical simulation; the lower panel shows thadelwgraph
image from SDL. The numerical simulation clearly captutes salient features of the
experiment, such as: the propagation speed of the fromtsulent mixing along the
interface; large eddies att- 0.75 att = 4; and a steeply sloped interfacerat O att = 7.

For comparison against previously published results weulsite two-dimensional
lock-exchange flow across a large range dbllowing Bonometti et al. (2008; BBM)
(their Fig. 4). For these simulations we use the same setisdg3BM: a domain of 25
x 1; Az = 1/160; Az = 1/64; and no-slip boundary conditions. BBM used a différen
method for nondimensionalization than we use herein; tmadlirect comparison to their
results we usd&ie = 7071v/1 +r and we examine the outputat 9v1 +r. Results in
Fig. A2 are comparable to those from BBM (their Fig. 4) in teraf overall structure
and front propagation speeds.

r=0.99

r=0.68

FIGUREAZ2. Asin Fig. 4 of Bonometti et al. (2008).
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FIGURE 1. Schematic of lock-exchange flow based on a) laboratory datl b) typical solutions to the
shallow-water equations. The vertical linecat 0 indicates the lock center where the heavier and lighter
fluids are initially separated; the horizontal channel sralle separated in the vertical by a distafte
After the release of the lock the heavier (lighter) fluid flotwsthe right (left) at speedf (T;f) with

thicknessh » (d ) measured some distance behind the complicated flow atabitpedge.

FIGURE 2. Numerical solutions of the two-layer shallow water egurat with the front conditions (2.6)-(2.7)
forr =1.0,0.7 and 04. For eachr, the height of the interface is displayed in a), c) and e),thadayer
and characteristic velocities (2.4) are displayed in bard) f).

FIGURE 3. Solution to the Riemann invariant equation (3.3)fd1(h) for density ratio- = a) 1.0. b) 0.7 and
c) 0.4. Starting values for the integrations of (3.3) arédatéd by the points.™ = up,h = h and
u" =up,h=hp.Ina)andb), ¢c, hc) denotes the crossing point wher&(h) = u~ (h) and the thick
solid lines indicates the parts of theé" (k) solution curves relevant for calculating the correspogdi
characteristic velocities® (u*), ¢ (v ™) and upper-layer velocitiest (long-dashed curves). In c) there
is no crossing point which indicates a change in characttéeo$olution.

FIGURE 4. Analytical construction of the solution to the shallowteraequations for density ratio = a)
1.0, b) 0.7 and c¢) 0.4. For each case the height of the ineHgapper panel) is plotted versus the
combined coordinate /¢ with the corresponding ray diagram given directly below.a)rand b) the
zone of constant state whelt€r /t) = hc (thin line segment) is located within the cofje < x/t < c¢
indicated in the ray diagram, and the left and right-sidea@sjpn fans (thick line segments) are defined
by the ray-diagram cones; < r/t < cz andcg < z/t < c}%, respectively. In c) the right-side
expansion fan disappears.

FIGURE 5. Right-side-front a) speedp,, and b) height i, as a function of-. The present free-boundary
solution (solid line) has two seqments separated by thetdotarcr = 0.5821 indicating the density
ratio dividing characteristicr( > r¢r) from time-like (- < r¢r) Benjamin fronts. Solutions with the
forced-boundary condition;, = 7, = 1/2 and free-boundary conditions for the right-side fronsfed
line) haver = r¢r1 = 0.5532 indicated by the star; the squarerat rqro = 0.8953 is the limiting
density ratio beyond which continuous solutions do nottdristhese assumed frontal conditions. The
LRL solutions are same as the foregoing fox. 0.5532 but differ forr > 0.5532 (indicated by the
solid gray line). The front-speed data from the present kitiuns are indicated by the ‘+’ (2D) and the
gray ‘x’ (3D); data from the 2D simulations of Bonometti et al. (2D@8e indicated by the circles.

FIGURE 6. Analytical construction of the solution to the shallowteraequations for the forced boundary
conditionuy, = hy, = 1/2 and free-boundary conditions on the right-side front for & 0.4 and b)

r = 0.7; ¢) LRL solution forr = 0.7 with forced-boundary conditions at both left and rightnfis

FIGURE 7. Navier-Stokes simulations of lock-exchange flow in twmelnsions for density ratios = a)
1.0, ¢) 0.7 and e) 0.4 and in three dimensionssfer b) 1.0, d) 0.7 and f) 0.4. Shown from the
three-dimensional simulations is tlyeaveraged density field. The three contour intervals disala
in all plots are 0.1, 0.5 and 0.9, with the middle value engeasi Overlaid on the three-dimensional
solutions are the present solutions to the SWE (solid gres) ind those proposed by LRL (dashed gray
line).

FIGURE 8. Across-channel-averaged density contouts®5 and 09 plotted as a function of the distance
relative to the left-going front,..; at t= 16 from three-dimensional Navier-Stokes simulatioiieck-
exchange flow for = a) 1.0, b) 0.7 and c) 0.4 which correspond, respectivelfigs. 7b, 7d and 7f.
Overlaid is the interface as computed from Benjamin’s pigéflow solution. The dotted lined denotes
the thickness @47 for the left-going front according to the present theory

FIGUREY. Asin Fig. 7e, except foRe = 10°; analytical solutions overlaid as in Fig. 7f.

FIGUREAL. Direct numerical simulation of a Boussinesq lock-exajelaboratory experiment.

FIGUREA2. As in Fig. 4 of Bonometti et al. (2008).



