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Equations for a Stratified Fluid

Vorticity/Buoyancy Dynamics

. 2D Euler fluid with Boussinesq buoyancy & constant stratification (stable) → oscillations

Dη

Dt
= bx

Db

Dt
= −w

Streamfunction Formulation

. ψ(x, z), incompressible streamfunction: u = ψz ; w = −ψx ; η = −∇2ψ

. uniform wind & hydrostatic scaling: η → −ψzz
ψzzt + ψzzx + bx + J(ψzz, ψ) = 0

bt + bx − ψx + J(b, ψ) = 0

. nonlinearity via 2D streamfunction advection: Jacobian determinant

J(f, ψ) =

˛̨̨̨
fx ψx
fz ψz

˛̨̨̨
=

˛̨̨̨
fx −w
fz u

˛̨̨̨
= ufx + wfz
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An Exact Wave Solution

ψzzt + ψzzx + bx + J(ψzz, ψ) = 0

bt + bx − ψx + J(b, ψ) = 0

Fourier Modes: ei(kx+mz−ωt)

. linear dispersion relation (slow/fast) for buoyancy-gravity waves

ω(k,m) = k ∓
k

|m|
; ~cg(k,m) =

„
1 ∓

1

|m|
, ±

km

|m|3

«
. steady wave: k = m = 1, ω = 0 (slow wave with upward group velocity)„

ψ
b

«
=

„
1
1

«
2ε sin(x+ z)

. Jacobians are zero ⇒ exact nonlinear solution!

Goal: to characterize the linear stability of this simple nonlinear wave

. to understand context for mountain flow instability (Youngsuk Lee, 2nd talk)

. instability: Mied 1976, Drazin 1977, Klostermeyer 1982, Sonmor & Klaassen 1997
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Linearized Stability

ψ̃zzt + ψ̃zzx + b̃x + ε J
“
ψ̃zz + ψ̃ , 2 sin(x+ z)

”
= 0

b̃t + b̃x − ψ̃x + ε J
“
b̃− ψ̃ , 2 sin(x+ z)

”
= 0

A Problem for Floquet Theory

. linear PDE with periodic, non-constant coefficients

. instability via parametric resonance (as for the Mathieu ODE)
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Floquet Approach

ψ̃zzt + ψ̃zzx + b̃x − iε J
“
ψ̃zz + ψ̃ , ei(x+z) − e−i(x+z)

”
= 0

b̃t + b̃x − ψ̃x − iε J
“
b̃− ψ̃ , ei(x+z) − e−i(x+z)

”
= 0

Floquet, Fourier & Hill

. product of Floquet exponential & co-periodic Fourier series„
ψ̃

b̃

«
= e

i(kx+mz−Ωt)

8<:
+∞X
−∞

~vn e
in(x+z)

9=;
. perturbation wavevector, ~K = (k,m) & Floquet eigenvalue, Im(Ω) > 0 ⇒ instability

. Hill’s infinite matrix26664
. . . . . .
. . . S0 εM1

εM0 S1
. . .

. . . . . .

37775 − Ω

26664
. . .

Λ0

Λ1
. . .

37775
. 2× 2 real blocks: Sn(k,m), symmetric; Λn(m), diagonal; Mn(k,m)

. truncate to −N ≤ n ≤ N + 1 & compute eigenvalues: {Ω(k,m)}
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Unstable Floquet Spectrum

Maximum Growth Rate vs ~K, ε = 0.1

. natural periodicity due to non-uniqueness of series indexing„
ψ̃

b̃

«
= e

i((k+q)x+(m+q)z−Ωt)

8<:
+∞X
−∞

~vn+q e
in(x+z)

9=;
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Floquet Spectrum Unwrapped

Maximum Growth Rate vs ~K, ε = 0.1

. center-of-mass criterion; preserves notion of central wavevector in (k,m)-space

0 ≤

X
n

n|ψ̃n|2X
n

|ψ̃n|2
< 1

. where do the complex eigenvalues come from?
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Eigenvalue Degeneracy

26664
. . . . . .
. . . S0 εM1

εM0 S1
. . .

. . . . . .

37775 − Ω

26664
. . .

Λ0

Λ1
. . .

37775

Instability of Small Amplitude Waves (ε� 1)

. ε = 0, linear dispersion relation ⇒ real eigenvalues, Ω = ω(k,m)

. ε 6= 0, characteristic polynomial is real

. for 0 < ε� 1, complex conjugate Ω’s appear from multiple eigenvalues at ε = 0

Double Root in a 2-Mode Truncation

. adjacent (n = 0, 1) Fourier modes ⇒ k0 + 1 = k1 ; m0 + 1 = m1„
ψ̃

b̃

«
= ~v0 e

i(k0x+m0z−Ωt)
+ ~v1 e

i(k1x+m1z−Ωt)

. at ε = 0, if double root =⇒ ω0 + 0 = ω1 → triad resonance
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Triad Resonances

~k0 + ~ks = ~k1 ; ω(~k0) + ω(~ks) = ω(~k1)

Resonant Trace

. resonances identified as ~ks-connections between ω0 & ω1 dispersion curves

. curves of all ~k0 generating a triad (double root) → resonant trace
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Triad Instability

Weakly Nonlinear Analysis (ε� 1)

. double root only a necessary condition for small ε appearance of complex eigenvalues

. bifurcation analysis via eigenvalue perturbation: Ω(~k0; ε) = ω0 + εΩ1

Mountain Wave Instability

. only slow-slow resonance has counter-propagating group velocity

9



“Quartet” Instability

~k0 + 2~ks = ~k2 ; ω(~k0) + 2ω(~ks) = ω(~k2)

Next-to-Adjacent (n = 0, 2) Fourier Modes

. analogous to the 2nd Mathieu instability: Ω(~k0; ε) = ω0 + ε2 Ω2

. n = 1 mode plays a crucial role as a “catalyst” (since nearest-neighbor coupling only)
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“Quartet” Instability

~k0 + 2~ks = ~k2 ; ω(~k0) + 2ω(~ks) = ω(~k2)

Next-to-Adjacent (n = 0, 2) Fourier Modes

. analogous to the 2nd Mathieu instability: Ω(~k0; ε) = ω0 + ε2 Ω2

. n = 1 mode plays a crucial role as a “catalyst” (since nearest-neighbor coupling only)
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Floquet Theory & Resonant Waves

~k0 + j ~ks = ~kj ; ω(~k0) + j ω(~ks) = ω(~kj)

2D Map of Instabilities

. Floquet theory: Fourier series → linear eigenvalue problem

. resonant waves: Fourier resonances → eigenvalue degeneracies

. are all instabilities born out of degeneracy?
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Floquet Theory & Resonant Waves

~k0 + j ~ks = ~kj ; ω(~k0) + j ω(~ks) = ω(~kj)

2D Map of Instabilities

. Floquet theory: Fourier series → linear eigenvalue problem

. resonant waves: Fourier resonances → eigenvalue degeneracies

. are all instabilities born out of degeneracy?
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In Closing

Linear Stability of a Plane Gravity Wave

. clear characterization of Floquet instabilities by wave resonances

. neutral curve, multiple-wave stability & nonhydrostatic flow

. application of weak turbulence ideas to linear stability

. implications for atmospheric wave turbulence?

ε = 0.1
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In Closing

Linear Stability of a Plane Gravity Wave

. clear characterization of Floquet instabilities by wave resonances

. neutral curve, multiple-wave stability & nonhydrostatic flow

. application of weak turbulence ideas to linear stability

. implications for atmospheric wave turbulence?

ε = 0.2
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