Floquet Instability & Triad Resonance in a Stratified Flow

> linear instabilities of a single-mode gravity wave

> analysis from Floquet & resonant wave perspectives
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> Dave Muraki & Youngsuk Lee, Simon Fraser University




Equations for a Stratified Fluid

Vorticity /Buoyancy Dynamics

> 2D Euler fluid with Boussinesq buoyancy & constant stratification (stable) —  oscillations
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Streamfunction Formulation

> Y(x, z), incompressible streamfunction: w = ¥, ; w = —Ygr ; N = —V2w
> uniform wind & hydrostatic scaling: n — —,,

Yozt + V2ze + bz A+ J(Yzz,p) = 0

bt + by — Y+ J(b, ) = 0

> nonlinearity via 2D streamfunction advection: Jacobian determinant
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An Exact Wave Solution

@bzzt + wzzm + b:lj + J(wzz, ’Qb) — 0
by + by — Y+ J(b,7) = 0

Fourier Modes: e!(kztmz—wt)

> linear dispersion relation (slow/fast) for buoyancy-gravity waves

k . 1 km
wkym) =k T — Eylkym) = (17 — , +

[m| [m| m |

> steady wave: k = m =1, w = 0 (slow wave with upward group velocity)

(‘If) (1)268in(x—|—z)

> Jacobians are zero = exact nonlinear solution!

Goal: to characterize the linear stability of this simple nonlinear wave

> to understand context for mountain flow instability (Youngsuk Lee, ond talk)

> instability: Mied 1976, Drazin 1977, Klostermeyer 1982, Sonmor & Klaassen 1997



Linearized Stability

"Zzzt + &zzx + Ea: + eJ (’(Zzz + 7; , 2sin(x + z)) =

by + by — g —I—eJ(E—QE ,QSin(m+z)) = 0

A Problem for Floquet Theory
> linear PDE with periodic, non-constant coefficients

> instability via parametric resonance (as for the Mathieu ODE)
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Floquet Approach

"‘Lzzt + "&zza: + Eac — e J ('&zz + "LL y €i(x+z) — 6—i(m—|—z)) = 0

b + by gy — ded (E — g, eilata) _ e—““z)) — 0

Floquet, Fourier & Hill

> product of Floquet exponential & co-periodic Fourier series

7 . oo :
( ’ig ) _ ez(kaz—i—mz—ﬂt) _zo:o T ezn(x—l—z)

> perturbation wavevector, K = (k, m) & Floquet eigenvalue, Im(€2) > 0 => instability

> Hill's infinite matrix
So eM1 Ao
eMj St Ay

> 2 X 2 real blocks: Sy, (k, m), symmetric; Ap(m), diagonal; My, (k, m)
> truncate to —N < n < N + 1 & compute eigenvalues: {Q(k, m)}



Unstable Floquet Spectrum

Maximum Growth Rate vs I? e =0.1

> natural periodicity due to non-uniqueness of series indexing
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Floquet Spectrum Unwrapped

Maximum Growth Rate vs I? e =0.1

> center-of-mass criterion; preserves notion of central wavevector in (k, m)-space
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>  where do the complex eigenvalues come from?




Eigenvalue Degeneracy

Instability of Small Amplitude Waves (e < 1)

> e = 0, linear dispersion relation = real eigenvalues, 2 = w(k, m)

> € # 0, characteristic polynomial is real

> for 0 < € < 1, complex conjugate §2's appear from multiple eigenvalues at ¢ = 0

Double Root in a 2-Mode Truncation

> adjacent (n = 0, 1) Fourier modes = ko +1=%k; ; mgog+1=my

(

> at e = 0, if double root =—> wp + 0 = wy — triad resonance
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Triad Resonances

i w(ko) + w(ks) = w(ky)

Resonant Trace

> resonances identified as kg-connections between wq & w1 dispersion curves

o(k,l) = -0.24
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> curves of all Eg generating a triad (double root) — resonant trace




Triad Instability
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Weakly Nonlinear Analysis (¢ < 1)

> double root only a necessary condition for small € appearance of complex eigenvalues

> bifurcation analysis via eigenvalue perturbation: Q(EO; €) = wp + e

Mountain Wave Instability

> only slow-slow resonance has counter-propagating group velocity



“Quartet” Instability

E0—|—2E32E2

w(ko) +2w(ks) =

w(k2)

Next-to-Adjacent (n = 0, 2) Fourier Modes

>

>
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analogous to the 2" Mathieu instability: Q(EO; €) = wq + e Qg

n = 1 mode plays a crucial role as a “catalyst” (since nearest-neighbor coupling only)
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“Quartet” Instability

EO + 2 ES = EQ ; w(E()) + 2w(E3) = W(Eg)

Next-to-Adjacent (n = 0, 2) Fourier Modes

> analogous to the 2" Mathieu instability: Q(EO; €) = wq + e Qg

> n = 1 mode plays a crucial role as a “catalyst” (since nearest-neighbor coupling only)
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Floquet Theory & Resonant Waves

ko+iks=1k; ; w(ko)+jw(ks) =w(k,)

2D Map of Instabilities

>  Floquet theory: Fourier series — linear eigenvalue problem
> resonant waves: Fourier resonances — eigenvalue degeneracies

> are all instabilities born out of degeneracy?
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Floquet Theory & Resonant Waves

ko+iks=1k; ; w(ko)+jw(ks) =w(k,)

2D Map of Instabilities

>  Floquet theory: Fourier series — linear eigenvalue problem
> resonant waves: Fourier resonances — eigenvalue degeneracies

> are all instabilities born out of degeneracy?
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In Closing

Linear Stability of a Plane Gravity Wave
> clear characterization of Floquet instabilities by wave resonances

> neutral curve, multiple-wave stability & nonhydrostatic flow

> application of weak turbulence ideas to linear stability

> implications for atmospheric wave turbulence?
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In Closing

Linear Stability of a Plane Gravity Wave

>

clear characterization of Floquet instabilities by wave resonances

> neutral curve, multiple-wave stability & nonhydrostatic flow

application of weak turbulence ideas to linear stability

> implications for atmospheric wave turbulence?
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